WILY SARMIENTO YUCRA

DENSIDADE DE VARIEDADES ESTÁVEIS FORTES EM FLUXOS ANOSOV

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Matemática, para obtenção do título de *Magister Scientiae*.

 $\begin{array}{c} {\rm VIÇOSA} \\ {\rm MINAS~GERAIS~-~BRASIL} \\ 2017 \end{array}$

Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

T

Sarmiento Yucra, Wily, 19-

S246d 2017 Densidade de variedades estáveis fortes em fluxos Anosov /

Wily Sarmiento Yucra. - Viçosa, MG, 2017.

vii, 59f.: il. (algumas color.); 29 cm.

Orientador: Enoch Humberto Apaza Calla.

Dissertação (mestrado) - Universidade Federal de Viçosa.

Referências bibliográficas: f.58-59.

1. Sistemas dinâmicos diferenciais. I. Universidade Federal de Viçosa. Departamento de Matemática. Programa de Pós-graduação em Matemática. II. Título.

CDD 22 ed. 515.39

WILY SARMIENTO YUCRA

DENSIDADE DE VARIEDADES ESTÁVEIS FORTES EM FLUXOS ANOSOV

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Matemática, para obtenção do título de *Magister Scientiae*.

APROVADA: 21 de julho de 2017.

Walter Teófilo Huaraca Vargas

Andrés Mauricio López Barragán

Enoch Humberto Apaza Calla (Orientador)

Dedico este trabalho aos meus pais, Diomedes Sarmiento e Maria Yucra.

Depois de escalar uma montanha muito alta, descobrimos que há muitas outras montanhas por escalar.

NÉLSON MANDELA

Agradecimentos

Agradeço primeiramente a Deus, pelos dons que me foram dados. Dons que não trabalhei para obter, mas lutei para cultivar. E por ter me dado saúde e forças para alcançar meus objetivos, além de sua infinita bondade e amor.

Sou muitíssimo grato aos meus pais, Diomedes Sarmiento e Maria Yucra, que deram todo seus esforços para que agora esteja culminando esta etapa de minha vida. Pelo exemplo de superação, amor e motivação constante que me há permitido ser uma pessoa de bem, vocês são minha vida.

Um agradecimento especial ao meu orientador, Enoch Humberto Apaza Calla e a meu coorientador Bernardo Melo de Carvalho pelas suas eficientes orientações, paciência, boa vontade, amizade e pelas correções e incentivo ao longe deste trabalho.

Agradeço aos meus irmãos: Marco, Froilan, Yoni, Raul, Juana e Maribel, que me deram coragem e incentivo para que pudesse encarar este desfio.

Agradeço ao professor Walter Huaraca e Bulmer Mejía por suas enumeráveis e valiosas contribuições durante o período de pesquisa.

Agradeço a todos os meus amigos e colegas de curso pela amizade, momentos de descontração e de estudos. Vocês fizeram parte da minha formação e vão continuar presentes em minha vida com certeza.

Aos funcionários do DMA-UFV, por colaborarem com a minha formação e pelos eficientes serviços prestados.

Agradeço a todos que de alguma forma contribuíram para a realização deste trabalho.

Finalmente, agradeço à CAPES pelo apoio financeiro indispensável para a realização deste trabalho.

Sumário

Resumo		vi	
${f Abstract}$			vii
In	\mathbf{trod}	ução	1
1	Preliminares		4
	1.1	Teoria básica da Geometria Riemanniana	4
	1.2	Noções de Sistemas Dinâmicos	7
	1.3	Fluxos Anosov	13
2	Resultado Principal		26
	2.1	Proposições e Lemas Prévios	26
	2.2	Folheações Conjuntamente Integráveis	46
	2.3	Prova do Teorema Principal	54
\mathbf{R}_{i}	eferê	ncias Bibliográficas	58

Resumo

YUCRA, Wily Sarmiento, M.Sc., Universidade Federal de Viçosa, julho de 2017. **Densidade de Variedades Estáveis Fortes em Fluxos Anosov**. Orientador: Enoch Humberto Apaza Calla. Coorientador: Bernardo Melo de Carvalho.

No presente trabalho, provaremos que para um fluxo Anosov $\phi: M \times \mathbb{R} \longrightarrow M$ de classe C^r $(r \ge 1)$, onde M é uma variedade Riemanniana compacta, conexa, suave e tal que o conjunto dos pontos não errantes seja igual a M, existem exatamente duas possibilidades: que cada variedade estável forte e instável forte é densa em M ou ϕ_t é a suspensão de um difeomorfismo de Anosov de uma subvariedade compacta C^1 de codimensão um em M.

Abstract

YUCRA, Wily Sarmiento, M.Sc., Universidade Federal de Viçosa, July, 2017. **Density of Strong Stable Manifolds in Anosov Flows**. Adviser: Enoch Humberto Apaza Calla. Co-adviser: Bernardo Melo de Carvalho.

In this paper, we will prove that for a flow $\phi: M \times \mathbb{R} \longrightarrow M$ of classe C^r $(r \ge 1)$, where M is a smooth compact connected Riemannian manifold and such that the set of nonwandering points is equal to M, there are exactly two possibilities: each strong stable and each strong unstable manifold is dense in M, or ϕ_t is the suspension of an Anosov diffeomorphism of a compact C^1 submanifold of codimension one in M.

Introdução

Para começar a estudar sistemas dinâmicos precisaremos de três ingredientes:

- (i) Um espaço de fase M arbitrário, que é o conjunto onde vamos a ter a dinâmica, como por exemplo um espaço de medida, espaço topológico, e uma das mais interessantes que dá propriedades fundamentares sobre sistemas dinâmicos a estrutura diferencial. Neste trabalho M vai ser uma variedade Riemanniana compacta, conexa e suave, cujos elementos ou pontos representam os possíveis estados do sistema.
- (ii) Um tempo, que pode ser discreto ou continuo.
- (iii) A lei do movimento, esta lei é uma regra que permite determinar o estado de sistema em cada instante de tempo t a partir dos estados do sistema em todos os instantes de tempo anteriores. Dita lei para nos simplesmente vai ser dado por um fluxo ϕ .

O estudo moderno da dinâmica dos fluxos foi iniciada a finais do século XIX e inícios do XX, por Liapunov, Birkhoff e Poincaré que introduz a ideia de descrever qualitativamente as soluções das equações diferenciais que não podem ser resolvidas analiticamente.

Um dos precursores da teoria hiperbólica em sistemas dinâmicos é D. V. Anosov, que em 1967 estuda os U-systems, agora conhecidos como $Fluxos\ Anosov$, que por definição é quando existe uma descomposição continua do fibrado tangente de M sobre toda a variedade em um subfibrado contrator, um subfibrado expansor e a direção do fluxo. O fluxo Anosov desempenhou um papel muito importante na compreensão e desenvolvimento da teoria de sistemas dinâmicos diferenciáveis, sendo este estruturalmente estável e globalmente hiperbólico. Isto é um dos motivos que incentivam o estudo de fluxos Anosov.

Uns dos principais exemplos de fluxos Anosov são os fluxos geodésicos no fibrado tangente unitário de uma variedade Riemanniana compacta de curvatura negativa e as suspensões de difeomorfismos de Anosov (ver [22]). Estes fluxos serão transitivos, no primeiro caso se o fluxo geodésico é definido num fibrado tangente unitário numa superficie fechada de curvatura gaussiana constante e igual a -1 [3], no segundo caso se o difeomorfismo é de codimensão 1 [22].

A. Verjovsky conjeturou que todo fluxo Anosov de codimensão 1 numa variedade compacta de dimensão maior igual a 3 é transitivo, isto é, que $\Omega(\phi_t)$ =

M. O que não é válido em dimensão 3 pois J. Frank e R. Williams construiram em 1980 o primeiro exemplo de fluxos de Anosov não transitivos conhecidos como Fluxos de Anosov Anômalos [7]. Em 1974, A. Verjovsky provou que todo fluxo Anosov de codimensão 1 numa variedade compacta de dimensão maior a 3 é transitivo, outra demonstração que é uma simplificação de A. Verjovsky é dada por T. Barbot [2], no qual explica por que conjetura falha em dimensão 3.

Se $\Omega(\phi_t) = M$ para um fluxo Anosov, então $W^u(x)$ e $W^s(x)$ são densos em M para cada $x \in M$ [17]. Mas, nem sempre é o caso de que cada uma das folhas de \mathcal{F}^{uu} ou de \mathcal{F}^{ss} é denso em M. Isto não ocorre, por exemplo, se ϕ_t é a suspensão de um homeomorfismo Anosov. Neste caso, cada folha de \mathcal{F}^{uu} e cada folha de \mathcal{F}^{ss} situam-se numa subvariedade compacta de codimensão 1 em M.

O objetivo principal desta disertação é mostrar um resultado obtido por Joseph F. Plante em [17]. Cujo enunciado é o seguinte:

Teorema Principal. Sejam M uma variedade Riemanniana compacta, conexa, suave e $\phi: M \times \mathbb{R} \longrightarrow M$ um fluxo Anosov de classe C^r $(r \ge 1)$ tal que $\Omega(\phi_t) = M$. Então existem exatamente duas possibilidades:

- i) Cada variedade estável forte e instável forte é denso em M, ou
- ii) ϕ_t é a suspensão de um difeomorfismo de Anosov de uma subvariedade compacta C^1 de codimensão um em M.

Isto é, os fluxos Anosov transitivos que não são suspensões tem folheações estáveis e instáveis fortes densas em M. Agora, daqui surge uma pergunta natural, existem fluxos Anosov transitivos que não sejam suspensão? C. Bonatti e R. Langevin respondem esta pergunta em [3] de maneira positiva.

O presente trabalho esta organizado como segue:

No capitulo 1, apresentamos os conceitos básicos como variedades diferenciáveis, variedade Riemanniana, folheações, e o objetivo principal fluxos Anosov junto com suas propriedades fundamentais e entre outros fatos necessários para o entendimento do trabalho.

No capitulo 2, apresentamos as principais proposições e lemas com a finalidade de mostrar o Teorema Principal. A estratégia para provar o Teorema Principal, a grosso modo. será a seguinte. Supor que não acontece o item (i), então existe um ponto $x \in M$ tal que $W^{uu}(x)$ ou $W^{ss}(x)$ não é densa em M. Logo, o Lema 2.4 garante a existe de um ponto periódico p de ϕ_t tal que $W^{uu}(p)$ não é densa em M. Daqui, da Proposição 2.1 segue que ϕ_t é a suspensão de um homeomorfismo $\phi_r|_{\overline{W^{uu}(p)}}$, onde r é o período de p.

Assim, para concluir basta mostrar que $\overline{W^{uu}(p)}$ seja uma subvariedade de M. Com esse propósito observemos que, como $W^{uu}(x)$ ou $W^{ss}(x)$ não é densa em M, segue da Proposição 2.3 que \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integrável, daqui da Proposição 2.2 segue que $E^u \oplus E^s$ é integrável. Logo, pela definição de subespaço integrável, existe uma folheação \mathcal{F} de classe C^1 tangente a $E^u \oplus E^s$. Seja L uma

folha de \mathcal{F} . Se mostramos que $L=\overline{W^{uu}(p)}$ se concluiria a prova do Teorema, pois teríamos que $\overline{W^{uu}(p)}$ é uma subvariedade de classe C^1 , já que $L\in\mathcal{F}$ é uma subvariedade de classe C^1 de M. Além disso compacta, desde que M é compacta e $\overline{W^{uu}(p)}\subset M$ fechada. E de codimensão um em M desde que ϕ_t é a suspensão de $\phi_r|_{\overline{W^{uu}(p)}}$.

Para isto, basta observar que L é denso em $\overline{W^{uu}(p)}$ (isto é, $\overline{L} = \overline{W^{uu}(p)}$) e que L é fechado (isto é, $L = \overline{L}$), pois claramente daqui teríamos que $L = \overline{W^{uu}(p)}$.

Capítulo 1

Preliminares

Neste capítulo, apresentaremos alguns resultados que serão usados no desenvolvimento de nosso trabalho, dentre eles: a noção de variedade diferencial, variedade Riemanniana, folheações e fluxos Anosov junto com suas propriedades fundamentais. Além de isso fixaremos as notações que serão utilizadas ao longo do trabalho. Tem-se como objetivo principal ajudar o leitor familiarizar com conceitos e resultados básicos que são fundamentais para nosso trabalho.

As principais referencias são: [5], [6], [11], [12], [13], [14], [17], [22] e outras referencias que serviram na complementação da teoria foram [4], [10], [16], [20], [21], [23] e [24]

1.1 Teoria básica da Geometria Riemanniana

Iniciaremos o trabalho fazendo uma breve revisão de variedades diferenciais e geometria Riemanniana, focando em alguns resultados que julgamos necessários para o entendimento da dissertação. Para isto seguimos o livro do professor Manfredo [6].

Variedades Diferenciáveis

Definição 1.1. Seja M um espaço topológico. Um **sistema de coordenas locais** ou **carta local** em M é o par (U,φ) onde $\varphi:U\longrightarrow \varphi(U)$ é um homeomorfismo de um subconjunto aberto $U\subset M$ sôbre um aberto $\varphi(U)\subset \mathbb{R}^m$.

Definição 1.2. Um altas de dimensão m sôbre um espaço topológico M é uma coleção \mathcal{A} de sistemas de coordenadas locais $\varphi: U \longrightarrow \mathbb{R}^m$ em M, cujos domínios U cobrem M. Os domínios U dos sistemas coordenadas $\varphi \in \mathcal{A}$ são chamados as vizinhanças coordenadas de \mathcal{A} .

Definição 1.3. Dados os sistemas de coordenadas locais $\varphi: U \longrightarrow \mathbb{R}^m$ e $\psi: V \longrightarrow \mathbb{R}^m$ no espaço topológico M, tais que $U \cap V \neq \emptyset$. O homeomorfismo $\psi \circ \varphi^{-1}: \varphi(U \cap V) \longrightarrow \psi(U \cap V)$ é chamado **mudança de coordenada**.

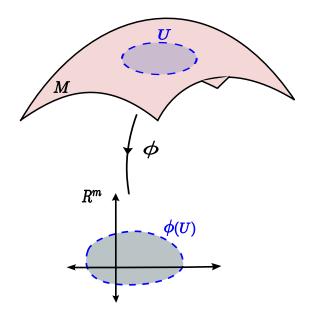


Figura 1.1: Carta Local.

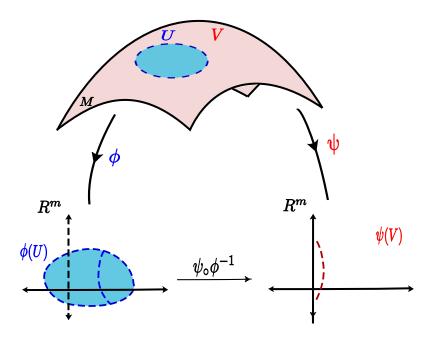


Figura 1.2: Mudança de Coordenada.

Um atlas \mathcal{A} é dito de classe C^r , $1 \leq r \leq \infty$, se todas as mudanças de coordenadas do atlas são de classe C^r .

Um sistemas de coordenadas $\varphi: U \longrightarrow \mathbb{R}^m$ de M diz-se **admissível** relativamente a um atlas \mathcal{A} de dimensão m e classe C^r , r > 0, de M se para cada $\psi \in \mathcal{A}$ com $U \cap V \neq \emptyset$, onde $\psi: V \longrightarrow \mathbb{R}^m$ tem-se que as mudanças de coordenadas $\psi \circ \varphi^{-1}$ e $\varphi \circ \psi^{-1}$ são de classe C^r . Em outras palavras, se $\mathcal{A} \cup \{\varphi\}$ é ainda um atlas de classe C^r em M.

Definição 1.4. Um atlas A de dimensão m e classe C^r , r > 0, de M é chamado máximo se contém todos os sistemas coordenadas que são admissíveis em relação

 $a \mathcal{A}$.

É importante ressaltar que todo atlas de dimensão m e de classe C^r , r > 0, de M, pode ser ampliado até se tornar um atlas máximo de classe C^r , para isso basta acrescentar-lhe todos os sistemas de coordenadas admissíveis.

Definição 1.5. Uma variedade diferenciável de dimensão m e classe C^r , r > 0, é um par (M, \mathcal{A}) onde M é um espaço topológico de Hausdorff, com base enumerável e \mathcal{A} é um atlas máximo de dimensão m e classe C^r .

Exemplo 1.1. Toda superfície de dimensão m e classe C^r , é uma variedade diferenciável de dimensão m e classe C^r , com o atlas A formado pelos sistemas de coordenadas $\varphi: U \longrightarrow \mathbb{R}^m$ que são inversas das parametrizações de classe C^r .

Definição 1.6. Sejam M e N variedades diferenciais de dimensão m e n respetivamente. Dizemos que $f: M \longrightarrow N$ é um **difeomorfismo** se f é bijetora, diferenciável e com inversa diferenciável.

Se existe um difeomorfismo entre duas variedades diferenciáveis M e N dizemos que eles são difeomorfas.

Definição 1.7. Sejam M e N variedades diferenciais de dimensão m e n respetivamente. Uma aplicação diferenciável $f: M \longrightarrow N$ é uma **submersão** se $Df(p): T_pM \longrightarrow T_{f(p)}N$ é sobrejetora para todo $p \in M$, isto é, o posto da matriz jacobiana $(Jf)_p$ é igual a n para todo $p \in M$.

Vale ressaltar que se $f: M \longrightarrow N$ é uma submersão então $m \ge n$.

Teorema 1.1. (Forma Local das Submersões).

Sejam M e N variedades diferenciais de dimensão m e n respetivamente e $f: M \longrightarrow N$ uma aplicação diferenciável de classe C^r , $r \ge 1$ que é uma submersão num ponto $p \in M$. Então existem cartas locais $\varphi: U \longrightarrow \mathbb{R}^m$, $p \in U$ e $\psi: V \longrightarrow \mathbb{R}^n$, $q = f(p) \in V$ e uma descomposição $\mathbb{R}^m = \mathbb{R}^n \times \mathbb{R}^{m-n}$ tal que $f(U) \subset V$ e $\psi \circ f \circ \varphi^{-1}(x,y) = x$. Em outras palavras, f é localmente equivalente a projeção $(x,y) \mapsto x$.

Definição 1.8. Sejam M e N variedades diferenciais de dimensão m e n respetivamente. Uma aplicação diferenciável $f: M \longrightarrow N$ é uma **imersão** se $Df(p): T_pM \longrightarrow T_{f(p)}N$ é injetora para todo $p \in M$. Se além disso, f for um homeomorfismo sobre sua imagem $f(M) \subset N$ com a topologia induzida por N, dizemos que f é um **mergulho**. Se $M \subset N$ e a inclusão $i: M \longrightarrow N$ é um mergulho então M é chamada subvariedade de N.

Observe que para $f: M \longrightarrow N$ ser uma imersão é necessário que $m \leq n$, a diferencia n-m é chamada de **codimensão** da imersão f.

Definição 1.9. Seja M uma variedade diferenciável. Definimos o **fibrado** tangente de M como o conjunto:

$$TM = \{(x, v) : x \in M, v \in T_xM\}$$

Variedade Riemanniana

Definição 1.10. Seja M uma variedade diferenciável. Uma **métrica** Riemanniana (ou estrutura Riemannina) em M é uma correspondência que associa a cada ponto $p \in M$ um produto interno $<,>_p$ no espaço tangente T_pM , que varia de forma diferenciável, isto é, se $X:U\subset\mathbb{R}^n\longrightarrow M$ é um sistema de coordenadas locais em torno de um ponto p, com $X(x_1,...,x_n)=p\in X(U)$ e $\frac{\partial(p)}{\partial x_i}=dx_p(0,...,1,...0)$, então $<\frac{\partial(p)}{\partial x_i},\frac{\partial(p)}{\partial x_j}>_p=g_{ij}(x_1,...,x_n)$ é uma função diferenciável em U.

Uma variedade diferenciável munida de uma métrica Riemannina chama-se variedade Riemanniana.

Definição 1.11. Diz-se que uma métrica Riemanniana g numa variedade diferenciável M de dimensão m é de **classe** C^r , r > 0, se, para cada carta $x: U \subset M \longrightarrow x(U) \subset \mathbb{R}^m$ a função $g^x: x(U) \times \mathbb{R}^m \times \mathbb{R}^m \longrightarrow \mathbb{R}$ é de classe C^r , ou equivalentemente, se as funções $g^x_{ij}: U \longrightarrow \mathbb{R}$ são de classe C^r .

Como as mudanças de coordenadas são difeomorfismo, a definição acima não depende da carta x.

Proposição 1.1. Toda variedade diferenciável M de classe C^r , r > 0, admite uma métrica Riemanniana de classe C^{r-1} .

Demonstração: Ver em [12], página 210.

Definição 1.12. Duas variedades M_1 e M_2 são **transversais** em M se para todo ponto $p \in M_1 \cap M_2$ temos que os espaços tangentes de T_pM_1 e T_pM_2 geram T_pM .

1.2 Noções de Sistemas Dinâmicos

Neste seção serão dados os conceitos, notações e resultados essenciais sobre fluxos, folheações e fluxos Anosov. Daqui em diante M denota, salvo menção em contrário, uma variedade Riemanniana compacta ,conexa e suave. As principais referencias para este seção foram [5], [6], [11], [12], [13], [14], [17] e [22].

Teoria de fluxos

Definição 1.13. Um fluxo de classe C^r $(r \ge 1)$ em M é uma aplicação $\phi: M \times \mathbb{R} \longrightarrow M$ de classe C^r $(r \ge 1)$ tal que:

- i) $\phi(x,0) = x$.
- ii) $\phi(x,t+s) = \phi(\phi(x,t),s)$ para todo $s,t \in \mathbb{R}$.

Podemos denotar $\phi_t(x)$ a $\phi(t,x)$, denominar ϕ_t ao fluxo e escrever $\phi_t: M \longrightarrow M$.

Definição 1.14. A **órbita de um ponto** $x \in M$ com respeito ao fluxo ϕ_t é o conjunto

$$O(x) = \{ \phi_t(x) : t \in \mathbb{R} \}.$$

Uma **órbita fechada** de um ponto $x \in M$ é quando O(x) é um conjunto fechado.

Definição 1.15. Um ponto $x \in M$ é chamado **ponto fixo** para um fluxo ϕ_t se $\phi_t(x) = x$ para todo $t \in \mathbb{R}$.

Definição 1.16. Um ponto $p \in M$ é chamado **ponto periódico** para um fluxo ϕ_t se existe T > 0 tal que $\phi_T(p) = p$ e $\phi_t(p) \neq p$, para todo $t \in (0, T)$.

A órbita de um ponto periódico é chamada **órbita periódica**. Denotamos por $Per(\phi_t)$ ao conjunto de pontos periódicos.

Definição 1.17. Um ponto $p \in M$ é dito não-errante para o fluxo ϕ_t se, para qualquer vizinhança $U \subset M$ de p e qualquer numero real T > 0, existe |t| > T tal que $\phi_t(U) \cap U \neq \emptyset$. Caso contrario p é dito **ponto errante**.

O conjunto de pontos não errantes de um fluxo ϕ_t será denotado por $\Omega(\phi_t)$ ou simplesmente Ω . Ao longe deste trabalho assumimos que $\Omega = M$.

Exemplo 1.2. Se $x \in M$ é um ponto fixo de um fluxo ϕ_t , então x é um ponto não errante para ϕ_t , pois para toda vizinhança U de x e qualquer tempo T > 0 temos $x \in \phi_t(U) \cap U$.

Exemplo 1.3. Se $p \in M$ é um ponto periódico com período r > 0 para um fluxo ϕ_t , então p é um ponto não errante para ϕ_t , pois existe um numero natural n tal que nr > 0 e $\phi_{nr}(p) = p$, de onde temos que, para qualquer vizinhança U de p $\phi_t(U) \cap U \neq \emptyset$.

Definição 1.18. Um subconjunto compacto $\Lambda \subset M$ é dito invariante com respeito ao fluxo ϕ_t , se $\phi_t(\Lambda) = \Lambda$ para todo $t \in \mathbb{R}$.

Exemplo 1.4. Se ϕ_t é um fluxo sobre M, então \emptyset e M são invariantes com respeito a ϕ_t .

Exemplo 1.5. O conjunto $\Omega(\phi_t) \subset M$ é invariante com respeito ao fluxo ϕ_t .

De fato: Provaremos que $\phi_t(\Omega(\phi_t)) = \Omega(\phi_t), \forall t \in \mathbb{R}$.

i) Mostremos que, $\phi_t(\Omega(\phi_t)) \subset \Omega(\phi_t)$.

Seja $y \in \phi_t(\Omega(\phi_t))$ com $t \in \mathbb{R}$, assim existe $x \in \Omega(\phi_t)$ tal que $y = \phi_t(x)$. Agora como $x \in \Omega(\phi_t)$ temos que para qualquer vizinhança V de x e qualquer numero real T > 0, existe $|t_0| > T$ tal que:

$$\phi_{t_0}(V) \cap V \neq \emptyset$$
.

Por outro lado, seja U uma vizinhança de $y = \phi_t(x)$, daqui segue que $x = \phi_{-t}(y) \in \phi_{-t}(U)$. Logo $\phi_{-t}(U)$ é uma vizinhança de x, então:

$$\phi_{t_0}\left(\phi_{-t}(U)\right)\cap\phi_{-t}(U)\neq\emptyset.$$

Assim,

$$\phi_t\left(\phi_{t_0}\left(\phi_{-t}(U)\right)\cap\phi_{-t}(U)\right) = \phi_t\left(\phi_{t_0}\left(\phi_{-t}(U)\right)\right)\cap\phi_t\left(\phi_{-t}(U)\right) \neq \emptyset.$$

De onde,

$$\phi_{t_0}(U) \cap U \neq \emptyset$$
.

Portanto $y \in \Omega(\phi_t)$ e, assim $\phi_t(\Omega(\phi_t)) \subset \Omega(\phi_t), \forall t \in \mathbb{R}$.

ii) Agora, provemos que $\Omega(\phi_t) \subset \phi_t(\Omega(\phi_t))$.

Seja $x \in \Omega(\phi_t)$, logo $\phi_{-t}(x) \in \phi_{-t}(\Omega(\phi_t))$. Agora, como $\phi_t(\Omega(\phi_t)) \subset \Omega(\phi_t)$ para todo $t \in \mathbb{R}$, segue que $\phi_{-t}(x) \in \Omega(\phi_t)$, de onde $x \in \phi_t(\Omega(\phi_t))$.

Isto \acute{e} , $\Omega(\phi_t) \subset \phi_t(\Omega(\phi_t))$ para todo $t \in \mathbb{R}$.

Assim, $\Omega(\phi_t) \subset M$ é invariante com respeito ao fluxo ϕ_t .

A seguinte proposição é de fácil verificação e sua prova pode ser achada, por exemplo, em [11] e [24].

- Proposição 1.2. i) O complemento de um conjunto que é invariante com respeito a um fluxo é invariante com respeito ao fluxo.
 - ii) A interseção de qualquer coleção de conjuntos que são invariantes com respeito um fluxo é ainda invariante com respeito ao fluxo.
 - iii) A união de qualquer coleção de conjuntos que são invariantes com respeito a um fluxo é ainda invariante com respeito ao fluxo.

Folheações

Introduzimos nesta seção a noção de folheação e as propriedades mais elementares que serão utilizadas no restante do trabalho. Veremos também alguns exemplos que ilustram o conceito.

A descomposição de uma variedade M em subvariedades imersas, todas da mesma dimensão, dá origem a uma folheação da variedade M. Uma folheação de uma variedade M, a grosso modo, é a descomposição de M numa união de subvariedades conexas, disjuntas e de mesma dimensão chamadas folhas, as quais se acumulam localmente como as folhas de um livro.

Para maiores detalhes ver [5].

Definição 1.19. Seja M uma variedade diferenciável de dimensão m e classe C^{∞} . Uma **folheação** de classe C^r e dimensão n de M, é um altas máximo \mathcal{F} de classe C^r em M satisfazendo:

- i) Se $(U, \varphi) \in \mathcal{F}$ então $\varphi(U) = U_1 \times U_2 \subset \mathbb{R}^n \times \mathbb{R}^{m-n}$, onde U_1 e U_2 são discos abertos de \mathbb{R}^n e \mathbb{R}^{m-n} respetivamente.
- ii) Se (U, φ) , $(V, \psi) \in \mathcal{F}$ são tais que $U \cap V \neq \emptyset$ então a mudança de coordenadas $\psi \circ \varphi^{-1} : \varphi(U \cap V) \longrightarrow \psi(U \cap V)$ é de classe C^r e esta dada por $\psi \circ \varphi^{-1}(x, y) = (h_1(x, y), h_2(y))$, onde $(x, y) \in \mathbb{R}^n \times \mathbb{R}^{m-n}$

Dizemos que M é **folheada** por \mathcal{F} , ou ainda que \mathcal{F} é uma **estrutura folheada** de dimensão n de classe C^r sobre M.

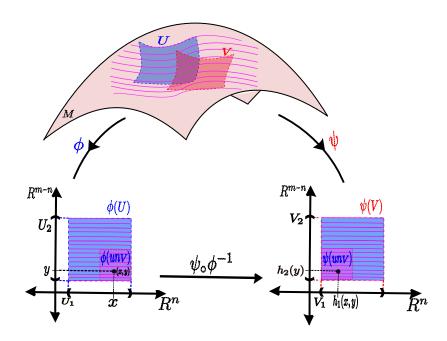


Figura 1.3: Folheação de uma variedade m- dimensional.

As cartas de $(U, \varphi) \in \mathcal{F}$ são chamadas **cartas folheadas**.

Definição 1.20. Sejam \mathcal{F} uma folheação de classe C^r de dimensão n, com 0 < n < m, de M^m e (U, φ) uma carta local de \mathcal{F} tal que $\varphi(U) = U_1 \times U_2 \subset \mathbb{R}^n \times \mathbb{R}^{m-n}$. Os conjuntos da forma $\varphi^{-1}(U_1 \times c)$, $c \in U_2$ são chamados **placas** de U, ou ainda **placas** de \mathcal{F} .

Fixando $c \in U_2$, a aplicação $g = \varphi^{-1}|_{U_1 \times \{c\}} : U_1 \times \{c\} \longrightarrow U$ é um mergulho de classe C^r , portanto as placas são subvariedades conexas de dimensão n de classe C^r de M. Além disso, se α e β são placas de U, então $\alpha \cap \beta \neq \emptyset$ ou $\alpha = \beta$.

Definição 1.21. Um caminho de placas de \mathcal{F} é uma sequência $\alpha_1, ..., \alpha_k$ de placas tal que $\alpha_j \cap \alpha_{j+1} \neq \emptyset$, para todo $j \in \{1, ..., k-1\}$.

Como M é recoberta pelas placas de \mathcal{F} , definimos em M a relação de equivalência: "pRq se existe um caminho de placas $\alpha_1, ..., \alpha_k$ com $p \in \alpha_1$ e $q \in \alpha_k$ ". As classes de equivalência de relação R são chamados **folhas de** \mathcal{F} . Segue da definição que uma folha de \mathcal{F} é um subconjunto de M conexo por caminhos.

Exemplo 1.6. Seja $f: M^m \longrightarrow N^n$ uma submersão de classe C^r . Então as curvas de nível $f^{-1}(c)$, $c \in N$, são folhas de uma folheação \mathcal{F} de classe c^r de M.

De fato, utilizando o Teorema da Forma Local das Submersões temos que dados, $x \in M$ e $q = f(x) \in N$, existem cartas locais (U, φ) em M, (V, ψ) em N tais que $x \in U$, $q \in V$ tem-se que:

- 1) $\varphi(U) = U_1 \times U_2 \subset \mathbb{R}^{m-n} \times \mathbb{R}^n$
- 2) $\psi(V) = V_2 \supset U_2$
- 3) $\psi \circ f \circ \varphi^{-1} = \pi_2$, onde π é a projeção tal que $(x,y) \mapsto y$

As cartas dadas pelo Teorema da Forma Local das Submersões de M definem uma folheação \mathcal{F} de M. Com efeito, o item (i) da Definição 1.19, é satisfeito como podemos ver acima. Para mostrar o item (ii) da Definição 1.19 basta mostrar que a composição do item (ii) é independente de x. Sejam (U,φ) e $(\overline{U},\overline{\varphi})$ cartas de M fornecidos pelo Teorema da Forma Local das Submersões. Mostraremos que, $\overline{\varphi} \circ \varphi^{-1}$ é independente de $x \in U_1$.

$$\pi_{2} \circ \overline{\varphi} \circ \varphi^{-1} = \overline{\psi} \circ f \circ \overline{\varphi}^{-1} \circ \overline{\varphi} \circ \varphi^{-1}$$

$$= \overline{\psi} \circ f \circ \varphi^{-1}$$

$$= \overline{\psi} \circ \psi^{-1} \circ \psi \circ f \circ \varphi^{-1}$$

$$= \overline{\psi} \circ \psi^{-1} \circ \pi_{2}$$

então,

$$\pi_2 \circ (\overline{\varphi} \circ \varphi^{-1}) = (\overline{\psi} \circ \psi^{-1}) \circ \pi_2.$$

Daqui, a composição do item (ii) da Definição 1.19 não depende de $x \in U_1$. Isto prova que, \mathcal{F} é uma folheação de classe C^r de M. Por definição as placas de \mathcal{F} estão contidas nas curvas de nível de f. Isto prova que, as folhas de \mathcal{F} são precisamente os conjuntos de nível de f e segue o resultado.

Um exemplo mais especifico é o seguinte.

Exemplo 1.7. Seja $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ uma aplicação definida por

$$f(x, y, z) = \alpha(r^2)e^z,$$

onde $r^2 = x^2 + y^2$, e

$$\alpha: \mathbb{R} \longrightarrow \mathbb{R}$$

é uma aplicação C^{∞} tal que $\alpha(0) = 1$, $\alpha(1) = 0$ e $\alpha'(t) < 0$, para todo t > 0. Então f é uma submersão, onde as folhas são as componentes conexas das superfícies de nível $f^{-1}(c)$ onde $c \in \mathbb{R}$.

De fato, suponhamos, por absurdo, que f não seja uma submersão. Então existe um ponto (x, y, z) tal que

$$\nabla f(x, y, z) = 0,$$

ou seja,

$$(2\alpha'(r^2)xe^z, 2\alpha'(r^2)ye^z, \alpha(r^2)e^z) = (0, 0, 0)$$

.

Daí,
$$x = y = 0$$
 e $\alpha(r^2) = 0$

Portanto, x=y=0, além disso, de $\alpha(r^2)=0$ temos que $x^2+y^2=1$, o que é uma contradição.

Logo f é uma submersão e como visto no Exemplo 1.6 as curvas de nível são folhas de uma folheação de codimensão um e de classe C^{∞} de M.

As folhas desta folheação são descritas por

$$f(x, y, z) = c,$$

ou seja,

$$\alpha(r^2)e^z = c.$$

- i) Se c = 0, então $\alpha(r^2) = 0$ e, por tanto, $x^2 + y^2 = 1$. Aqui as curvas de nível correspondem ao cilindro de radio 1 que é representado por $f^{-1}(0)$.
- ii) Se c>0, então $\alpha(r^2)e^z=c>0$. Assim $\alpha(r^2)>0$. Mais precisamente,

$$z = ln(c) - ln(\alpha(r^2)).$$

Quando c = 1 temos,

$$z = -ln(\alpha(r^2)).$$

O gráfico da curva acima no plano y = 0 é dado por

$$z = -ln(\alpha(r^2)).$$

Daí,

$$z' = -\frac{2\alpha(x^2)}{\alpha(x^2)}.x = 0 \Rightarrow x = 0.$$

Então x=0 é o único ponto crítico de z. Temos $z\to\infty$ quando $x\to 1^+$ ou 1^- . O gráfico de z é uma parábola.

No caso c < 0 a análise é similar. O gráfico das folhas de \mathcal{F} estão representados no gráfico 1.4.

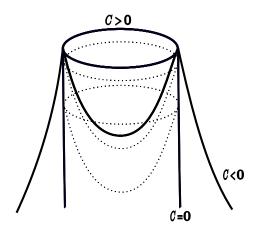


Figura 1.4: Exemplo de Folheação.

Exemplo 1.8. Um exemplo de uma folheação de dimensão 1 é a folheação de $\mathbb{R}^2 = \mathbb{R}^1 \times \mathbb{R}^{2-1}$ onde as folhas são retas da forma $\mathbb{R} \times \{c\}$ com $c \in \mathbb{R}^{2-1}$.

Na teoria de folheações é usual considerar também as folheações definidas:

- i) Por uma fibração (E, π, B, F) , onde as fibras, $\pi^{-1}(b)$, $b \in B$, definem uma folheação de E, cujas folhas são isomorfas às componentes conexas de F.
- ii) Por campos de vetores X sem singularidades, onde as folhas são as curvas solução da equação diferencial $\frac{dx}{dt} = X(x)$.

1.3 Fluxos Anosov

Nesta seção definiremos um dos conceitos mais importantes nesta dissertação, fluxos Anosov e abordaremos algumas resultados importantes da teoria de fluxos Anosov. As principais referencias para este seção foram [11], [14], [17] e [22].

Definição 1.22. Um fluxo $\phi_t : M \longrightarrow M$, $(t \in \mathbb{R})$ é um fluxo de Anosov de classe C^r , $(r \ge 1)$ se existe uma descomposição continua e ϕ_t -invariante do fibrado tangente de M em três subfibrados, isto é,

$$T_x M = E_x^s \oplus E_x^T \oplus E_x^u, \forall x \in M.$$

Onde E^T é o fibrado tangente de dimensão 1 para o fluxo ϕ_t não-singular e E^u e E^s satisfazem as sequintes condições:

i) Existem constantes A > 0, $\mu > 1$ tal que para todo $t \in \mathbb{R}$, $v \in E^u$ implica

$$||D\phi_t(x).v|| \ge A\mu^t ||v||.$$

ii) Existem constantes B > 0, $\lambda < 1$ tal que, para todo $t \in \mathbb{R}$, $v \in E^s$ implica

$$||D\phi_t(x).v|| \le B\lambda^t||v||$$

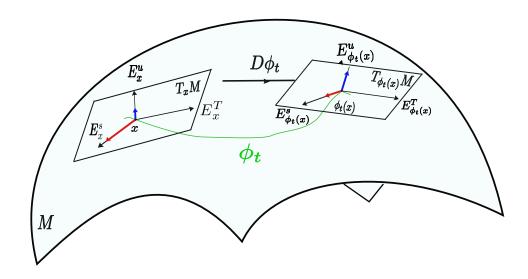


Figura 1.5: Fluxo Anosov: E^s contrae e E^u expande

Notemos, que desde que M e compacta, se escolhesse outra métrica Riemanniana que determine a norma $|.|_1$, se teria que existe uma constante k>0 tal que $k|v|_1 \leq |v| \leq k^{-1}|v|_1$, para todo $x \in T_xM$, e portanto (i) e (ii) se verifica (com constantes diferentes a A e B). Logo a definição é independente da métrica Riemanniana escolhida.

Os principais exemplos de fluxos Anosov são fluxos geodésicos no fibrado tangente unitário de uma variedade Riemanniana compacta de curvatura negativa (ver [22]), e suspensões de diefeomorfismo Anosov. Este último exemplo é descrito como segue:

Seja $f: N \longrightarrow N$ um difeomorfismo de Anosov de uma variedade compacta N (isto significa que existe um f-invariante decomposição $TN = E^u \oplus E^s$, as quais satisfazem as condições análogas ao (i) e (ii) da definição 1.22). Considere o fluxo

$$\eta_t : N \times \mathbb{R} \longrightarrow N \times \mathbb{R}$$

$$(x,s) \longmapsto \eta(x,s) = (x,s+t)$$

a suspensão de f é o fluxo induzido por η_t na variedade obtido de $N \times \mathbb{R}$ tornando as identificações $(x,s) \sim (f(x),s+1)$.

Definição 1.23. Seja M uma variedade suave $e E \subset TM$ um subfibrado contínuo do fibrado tangente. E é chamado **integrável** se é o fibrado tangente de uma folheação C^1 (ou seja uma folheação determinada por uma carta coordenado de classe C^1 [9]).

Observação 1. a) E^u e E^s são chamados os sub-fibrados de expansão e contração de TM, respetivamente.

- b) O subespaço $E^u \oplus E^s$ não necessariamente é integrável. Se $E^u \oplus E^s$ for integrável então, existe uma folheação \mathcal{F} de classe C^1 tal que o subespaço $E^u \oplus E^s$ é tangente a \mathcal{F} . Se L é uma folha de \mathcal{F} então L é tangente a $E^u \oplus E^s$, além disso L é \mathcal{F}^{uu} -saturado e \mathcal{F}^{ss} -saturado.
- c) Os fibrados $E^u \oplus E^T$, $E^s \oplus E^T$, E^u , E^s são integrável e as variedades integrais são de classe C^r . Estas variedades, de fato, determina folheações contínuas de M que vamos denotar por \mathcal{F}^u , \mathcal{F}^s , \mathcal{F}^{uu} , \mathcal{F}^{ss} , respetivamente.
- d) Se $x \in M$, então as respetivas folhas destas soluções que contêm x são denotadas por $W^u(x), W^s(x), W^{uu}(x), W^{ss}(x)$ e são chamadas as variedades instável, estável, instável forte, estável forte de x, respetivamente. De maneira mais precisa.

Maiores detalhes da Observação 1 podem ser encomtrados em [11] e [22].

Definição 1.24. Os conjuntos:

$$W^{ss}(x) = \{ y \in M : d(\phi_t(x), \phi_t(y)) \to 0, quando, t \to +\infty \}$$

e

$$W^{uu}(x) = \{ y \in M : d(\phi_t(x), \phi_t(y)) \to 0, quando, t \to -\infty \}$$

São chamados respetivamente variedade estável e variedade instável forte do ponto x para o fluxo ϕ_t . Onde d denota a função distancia correspondente a métrica Riemanniana M.

Definamos a variedades estável e instável de um ponto $x \in M$ para o fluxo ϕ_t como sendo respetivamente os conjuntos

$$W^{u}(x) = \bigcup_{t \in \mathbb{R}} \phi_{t} \left(W^{uu}(x) \right)$$

$$W^{s}(x) = \bigcup_{t \in \mathbb{R}} \phi_{t} \left(W^{ss}(x) \right).$$

Podemos escolher a métrica em M, de modo que para a decomposição invariante temos A=B=1. Este pressuposto na métrica implica as seguintes condições sobre a função distância d.

(a) Se x e y estiverem na mesma variedade estável então

$$d(\phi_t(x), \phi_t(y)) \le d(x, y)$$
, para $t \ge 0$

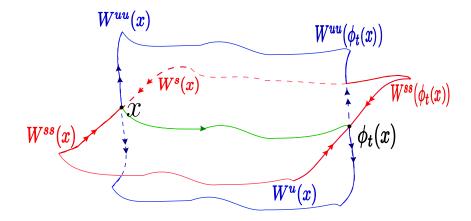


Figura 1.6: Variedades estável e instável

e se x e y estiverem na mesma variedade instável então

$$d(\phi_t(x), \phi_t(y)) \ge d(x, y)$$
, para $t \ge 0$.

(b) Se x e y estiverem na mesma variedade estável forte então

$$d(\phi_t(x), \phi_t(y)) < \lambda^t d(x, y), \text{ para } t > 0$$

e se x e y estiverem na mesma variedade instável forte então

$$d(\phi_t(x), \phi_t(y)) \ge u^t d(x, y)$$
, para $t \ge 0$

onde $\lambda < 1$ e $\mu > 1$ são os dados para a decomposição hiperbólico com respeito a métrica.

Uma métrica satisfazendo estas condições é dita "adaptada" no resto desta dissertação, nos assumimos que a métrica satisfaz (a) e (b).

Agora, se d_u, d_s, d_{uu}, d_{ss} denota a métrica induzida por d sobre as folhas de folheações $\mathcal{F}^u, \mathcal{F}^s, \mathcal{F}^{uu}, \mathcal{F}^{ss}$, respetivamente, define-se para cada $x \in M$, $\delta > 0$.

$$B_{\delta}(x) = \{ y \in M : d(x,y) < \delta \}$$

$$B_{\delta}^{u}(x) = \{ y \in W^{u}(x) : d_{u}(x,y) < \delta \}$$

$$B_{\delta}^{s}(x) = \{ y \in W^{s}(x) : d_{s}(x,y) < \delta \}$$

$$B_{\delta}^{uu}(x) = \{ y \in W^{uu}(x) : d_{uu}(x,y) < \delta \}$$

$$B_{\delta}^{ss}(x) = \{ y \in W^{ss}(x) : d_{ss}(x,y) < \delta \}.$$

Teorema 1.2. (Teorema da Variedade Estável para Fluxos). Seja $\Lambda \subset M$ um conjunto hiperbólico invariante para um fluxo ϕ_t . Então existe $\epsilon > 0$ tal que para cada ponto $p \in \Lambda$ existem dois bolas mergulhadas $B^{ss}_{\delta}(p)$ e $B^{uu}_{\delta}(p)$ os quais são tangentes a E^s_p e E^u_p , respetivamente.

Teorema de Vizinhança Produto Local para Fluxos de Anosov

Teorema 1.3. Seja $\Omega(\phi_t) = M$ para um fluxo Anosov ϕ_t então existe $\delta_0 > 0$ independente de $x \in M$ tal que para $0 < \delta \le \delta_0$ as aplicações

$$G: B^s_{\delta}(x) \times B^{uu}_{\delta}(x) \longrightarrow M$$

 $(y, z) \longmapsto G(y, z) = B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y)$

e

$$H: B^{ss}_{\delta}(x) \times B^{u}_{\delta}(x) \longrightarrow M$$

 $(y, z) \longmapsto H(y, z) = B^{ss}_{2\delta}(z) \cap B^{u}_{2\delta}(y)$

são definidas univocamente e são homeomorfismos sobre suas respetivas imagens.

Demonstração:

Primeiro mostraremos que, se $y, z \in \Omega$ e $d(y, z) < \delta_0$ para algum δ_0 então para todo $\delta \leq \delta_0$ tem-se que $B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y) \neq \emptyset$, isto é, existe $p \in B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y)$.

Este fato segue da transversalidade uniforme de $E^s \oplus E^T$ e E^u . Além disso, claramente $p \in \Omega$ desde que $B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y) \subset M = \Omega$.

agora, passamos a provar que p é único.

Afirmação 1.1. $p \in B_{2\delta}^s(z) \cap B_{2\delta}^{uu}(y)$ é único.

De fato, Suponhamos que exista outro ponto $p' \in B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y)$ mostraremos que p' = p.

Como $p \in B_{2\delta}^s(z) \cap B_{2\delta}^{uu}(y)$ temos que $p \in B_{2\delta}^s(z)$, então

$$d_s(p,z) < 2\delta. (1.1)$$

Por outro lado, como $p' \in B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y)$ temos que $p' \in B^s_{2\delta}(z)$, de onde segue que

$$d_s(p',z) < 2\delta. (1.2)$$

Agora, de (1.1), (1.2) e a desigualdade triangular temos que,

$$d_s(p', p) < d_s(p', z) + d_s(z, p)$$
$$< 2\delta + 2\delta = 4\delta$$
$$\Rightarrow d_s(p', p) < 4\delta.$$

De onde,

$$p' \in B_{4\delta}^s(p). \tag{1.3}$$

De maneira similar provemos que,

$$p' \in B_{4\delta}^{uu}(p). \tag{1.4}$$

Pois, desde que $p \in B^s_{2\delta}(z) \cap B^{uu}_{2\delta}(y)$ temos que $p \in B^{uu}_{2\delta}(y)$, então

$$d_{uu}(p,y) < 2\delta. (1.5)$$

Por outro lado, como $p'\in B^s_{2\delta}(z)\cap B^{uu}_{2\delta}(y)$ temos que $p'\in B^{uu}_{2\delta}(y)$, de onde segue que,

$$d_{uu}(p',y) < 2\delta. \tag{1.6}$$

Daqui, de (1.5), (1.6) e a desigualdade triangular, temos que,

$$d_{uu}(p', p) < d_{uu}(p', z) + d_{uu}(z, p)$$
$$< 2\delta + 2\delta = 4\delta$$
$$\Rightarrow d_{uu}(p', p) < 4\delta.$$

De onde,

$$p' \in B_{4\delta}^{uu}(p)$$
.

Logo, de (1.3) e (1.4) temos que $p'\in B^s_{4\delta}(p)\cap B^{uu}_{4\delta}(p)=\{p\}$. Daqui, segue que $p'\in\{p\}$. E assim,

$$p'=p$$
.

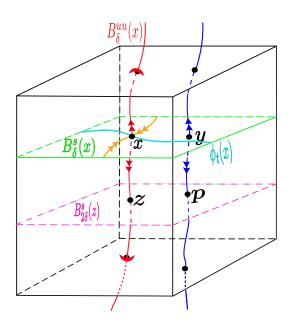


Figura 1.7: Vizinhança Produto Local

Teorema de Anosov

Definição 1.25. Sejam M uma variedade Riemanniana $e \phi_t : M \longrightarrow M$ um $fluxo, \delta, T > 0$ a aplicação $c : \mathbb{R} \longrightarrow M$ é chamada uma δ -pseudo órbita se:

$$d(\phi_t(c(\tau)), c(\tau+t)) \le \delta$$

para todo | $t \leq T e \forall \tau \in \mathbb{R}$.

Definição 1.26. Uma curva $c : \mathbb{R} \longrightarrow M$ é ϵ -sombreado pela órbita de $x \in M$ se existe uma função $s : \mathbb{R} \longrightarrow \mathbb{R}$ com $|\frac{d}{dt}s - 1| < \epsilon$ tal que $d(c(s(t)), \phi_t(x)) < \epsilon$ para todo $t \in \mathbb{R}$.

Lema 1.1. (Sombreamento para fluxos).

Seja M uma variedade Riemannina, ϕ_t um fluxo diferenciavel e Λ um conjunto hiperbólico compacta para ϕ_t , então existe uma vizinhança $U(\Lambda) \supset \Lambda$ tais que para todo $\epsilon > 0$ existe, $\delta > 0$ tal que toda a δ -pseudo orbita é ϵ - sombreada por uma órbita de ϕ_t .

Corolário 1.4. Seja M uma variedade Riemannina, ϕ_t um fluxo diferenciavel e Λ um conjunto hiperbólico compacta para ϕ_t , então existe uma vizinhança $U(\Lambda) \supset \Lambda$ tais que $\forall \epsilon > 0, \exists \delta > 0$ tal que toda a δ -pseudo órbita é ϵ - sombreada por uma órbita periódica.

Demonstração: Ver [11].

A demonstração do seguinte teorema pode ser encontrada também em??

Teorema 1.5. (Teorema de Anosov). Se $\Omega(\phi_t) = M$ para um fluxo Anosov então o conjunto de pontos periódicos de ϕ_t é denso em Ω .

Demonstração:

Queremos mostrar que $\overline{Per(\phi_t)} = \Omega$.

De fato:

- i) $\overline{Per(\phi_t)} \subset M = \Omega$ então $\overline{Per(\phi_t)} \subset \Omega$ é imediato, assim, basta mostrar que,
- ii) $\Omega \subset \overline{Per(\phi_t)}$.

Isto é, dado $x \in \Omega$ mostraremos que $x \in \overline{Per(\phi_t)}$.

Lembremos que $x \in \overline{Per(\phi_t)}$ se, somente se, $\forall V_x$, $V_x \cap per(\phi_t) \neq \emptyset$ isto é, se $\forall V_x, \exists p \in V_x \cap per(\phi_t)$.

Dados $x \in \Omega$ e $\epsilon > 0$ arbitrário, seja V_x^{ϵ} uma vizinhança de x, Como ϕ_t é um fluxo Anosov, existe uma vizinhança produto $N_{\delta}(x)$ de x onde $\delta > 0$ com $N_{\delta}(x) \subset V_x^{\epsilon}$.

Logo, como $x \in \Omega$ então $\forall t > 0, \forall V_x = V, \exists T \geq t$ tal que $\phi_T(V) \cap V \neq \emptyset$. Como isto é válido para qualquer vizinhança de x, em particular para a vizinhança produto, assim podemos tomar $V = N_{\delta}(x)$.

De aqui, existe $q \in \phi_T(V) \cap V$.

Assim,

$$\phi_{-T}(q) \in V \cap \phi_{-T}(V)$$
.

Agora, denotemos $z = \phi_{-T}(q)$, daqui segue que existe $z \in V \cap \phi_{-T}(V)$ e além disso $\phi_T(z) \in \phi_T(V) \cap V$.

Isto é,

$$d(\phi_T(z), z) < \delta. \tag{1.7}$$

Afirmação 1.2. Existe uma δ - pseudo órbita $c: \mathbb{R} \longrightarrow M$ de ϕ_t para $|t| \leq T$.

De fato, seja T > 0 e,

$$c: \mathbb{R} \longrightarrow M$$

 $t \longmapsto c(t) = \phi_{tmodT}(z)$

para $|t| \leq T$.

i) Para |t| < T, temos que existe $\delta > 0$ tal que $d(\phi_t(c(\tau)), c(t+\tau)) < \delta$, para todo $\tau \in \mathbb{R}$.

Pois, observe que

$$c(\tau + t) = \phi_{(\tau+t)modT}(z)$$

$$= \phi_{\tau modT}(\phi_{tmodT}(z))$$

$$= \phi_{\tau modT}(\phi_t(z))$$

$$= \phi_t(\phi_{\tau modT}(z))$$

$$= \phi_t(c(\tau)).$$

De onde,

$$d(\phi_t(c(\tau)), c(t+\tau)) = 0 < \delta, \forall \tau \in \mathbb{R} \ e \ |t| < T.$$

ii) Para |t| = T, temos que $d(\phi_t(c(\tau), c(t+\tau)) < \delta, \forall \tau \in \mathbb{R}$.

Observe inicialmente que, $c(T) = \phi_T(z), z \in W^s(z)$ e,

$$d(\phi_t(c(\tau), c(t+\tau))) = d(\phi_t(\phi_{\tau modT}(z)), \phi_{(t+\tau)modT}(z))$$

$$\stackrel{t=T}{=} d(\phi_T(\phi_{\tau modT}(z)), \phi_{\tau modT}(\phi_{TmodT}(z)))$$

$$= d(\phi_{\tau modT}(\phi_T(z)), \phi_{\tau modT}(z))$$

$$< d(\phi_T(z), z) \stackrel{(1.7)}{<} \delta.$$

Assim,

$$d(\phi_t(c(\tau), c(t+\tau)) < \delta, \forall \tau \in \mathbb{R}.$$

De onde se conclui a prova da Afirmação 1.2.

Daí, pelo corolário 1.4 a $\delta-$ pseudo órbita é $\epsilon-$ sombreada por uma órbita periódica.

Pelo que existe,

$$p \in per(\phi_t) \cap V_x^{\epsilon}, \forall V_x^{\epsilon}$$

De onde,

$$x \in \overline{per(\phi_t)}$$
.

Daí,

$$\Omega \subset \overline{per(\phi_t)}.$$

Assim, finalmente temos que $\overline{per(\phi_t)} = \Omega$. (Ver figura 1.8).

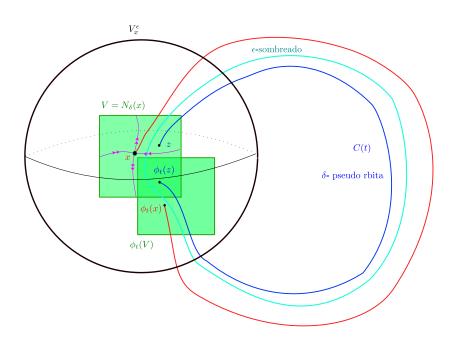


Figura 1.8: Teorema de Anosov

Conjuntos \mathcal{F}^{σ} -saturado $(\sigma = u, s, uu, ss)$

Definição 1.27. Seja \mathcal{F}^{σ} uma folheação de uma variedade M. Então o conjunto $K \subset M$ é chamado \mathcal{F}^{σ} -saturado se é uma união de folhas de \mathcal{F}^{σ} onde $(\sigma = u, s, uu, ss)$.

Lema 1.2. Seja \mathcal{F}^{σ} uma folheação de uma variedade M. Então o conjunto $K \subset M$ é \mathcal{F}^{σ} -saturado se, somente, se para todo $x \in K$ tem-se que $W^{\sigma}(x) \subset K$, onde $(\sigma = u, s, uu, ss)$.

Demonstração:

Suponhamos que $K \subset M$ é \mathcal{F}^{σ} -saturado, então mostraremos que dado $x \in K$ arbitrário tem-se que $W^{\sigma}(x) \subset K$.

De fato:

Como $K \subset M$ é \mathcal{F}^{σ} -saturado, temos pela definição que:

$$K = \bigcup_{x \in K} W^{\sigma}(x).$$

Dado $x \in K$ queremos mostrar que $W^{\sigma}(x) \subset K$.

Seja
$$y \in W^{\sigma}(x)$$
, logo como $W^{\sigma}(x) \subset \bigcup_{x \in K} W^{\sigma}(x)$

temos que,

$$y \in \bigcup_{x \in K} W^{\sigma}(x) = K.$$

Isto é,

$$y \in K$$
.

Agora, suponhamos que dado $x \in K$ arbitrário, se $W^{\sigma}(x) \subset K$ então K é \mathcal{F}^{σ} -saturado. Isto é que,

$$K = \bigcup_{x \in K} W^{\sigma}(x).$$

i) Provemos que, $\bigcup_{x \in K} W^{\sigma}(x) \subset K$.

Seja
$$y \in \bigcup_{x \in K} W^{\sigma}(x)$$
 então $y \in W^{\sigma}(x)$ para algum $x \in K$.

Logo, como $W^{\sigma}(x) \subset K$ segue que $y \in K$.

ii) Provemos que, $K \subset \bigcup_{x \in K} W^{\sigma}(x)$.

Seja $y \in K$, logo como $y \in W^{\sigma}(y) \subset \bigcup_{x \in K} W^{\sigma}(x)$ temos que,

$$y \in \bigcup_{x \in K} W^{\sigma}(x).$$

Observação 2. a) Se $K \subset M$ é \mathcal{F}^{σ} -saturado então \overline{K} (o fecho de K) é \mathcal{F}^{σ} -saturado, onde ($\sigma = u, s, uu, ss$).

De fato:

Seja $x \in \overline{K}$ mostraremos que $W^{\sigma}(x) \subset \overline{K}$.

Como $x \in \overline{K}$, existe uma sequência de pontos $(x_n)_{n \in \mathbb{N}} \in K$ tal que $\lim_{n \to \infty} x_n = x$, agora como K é \mathcal{F}^{σ} -saturado tem-se que $W^{\sigma}(x_n) \subset K$.

Por outro lado, seja $y \in W^{\sigma}(x)$. Daí, pela continuidade das folhas W^{σ} e do fato que $\lim_{n \to \infty} x_n = x$, existe $(n_k)_{k \in \mathbb{N}}$ tal que $B_{r_k}(y) \cap W^{\sigma}(x_{n_k}) \neq \emptyset$, onde, $B_{r_k}(y)$ é uma bola de y e radio $r_k > 0$. Isto é, existe $y_k \in B_{r_k}(y) \cap W^{\sigma}(x_{n_k})$ tal que $\lim_{k \to \infty} y_k = y$. Logo como $B_{r_k}(y) \cap W^{\sigma}(x_{n_k}) \subset W^{\sigma}(x_{n_k}) \subset K$ temos que, $y_k \in K$. Assim, existe uma sequência $(y_k)_{k \in \mathbb{N}} \in K$ tal que $\lim_{k \to \infty} y_k = y$ daí, seque que $y \in \overline{K}$.

b) Se $K \subset M$ é \mathcal{F}^{σ} -saturado, então K^{c} (o complemento de K) é \mathcal{F}^{σ} -saturado, onde ($\sigma = u, s, uu, ss$).

De fato:

Por contradição, suponhamos que dado $y \in K^c$ tem-se que $W^{\sigma}(y) \not\subset K^c$. Então dado $z \in W^{\sigma}(y)$ temos que $z \not\in K^c$, logo $z \in K$ agora, como K é \mathcal{F}^{σ} -saturado segue que $W^{\sigma}(z) \subset K$. Por outro lado, como $z \in W^{\sigma}(y)$ então $y \in W^{\sigma}(z)$ daí, $y \in K$ isto é, $y \not\in K^c$ o que é uma contradição.

Agora demos um exemplo mais específico.

Exemplo 1.9. $W^u(x) \notin \mathcal{F}^u$ -saturado.

De fato, dado $y \in W^u(x)$ queremos mostrar que $W^u(y) \subset W^u(x)$.

Seja $z \in W^u(y)$, como $y \in W^u(x)$ temos que $W^u(y) = W^u(x)$, de onde $z \in W^u(x)$.

Observação 3. $\overline{W^u(x)}$ é \mathcal{F}^u -saturado. Este fato é uma consequência do Exemplo 1.9 e do item (a) da Observação 2.

Uma Consequência do Teorema de Anosov

Agora, mostramos uns dos principais resultados desta seçao, que afirma que $W^u(x)$ e $W^s(x)$ são densos em M para cada $x \in M$. Mas posteriormente no capitulo 2 provaremos que nem sempre é o caso de que cada uma das folhas de \mathcal{F}^{uu} ou de \mathcal{F}^{ss} é denso em M.

Teorema 1.6. Se $\Omega(\phi_t) = M$ para um fluxo Anosov então $W^u(x)$ e $W^s(x)$ são densos em M para cada $x \in M$.

Demonstração: Queremos mostrar que $\overline{W^u(x)} = M$, para todo $x \in M$.

De fato:

Seja $x \in M$, como M é conexo não admite outra cisão além da trivial isto é:

Se $M=A\cup B$ onde A e B são conjuntos disjuntos e abertos então $A=\emptyset$ ou $B=\emptyset.$

Denotemos $A = \overline{W^u(x)}$ e $B = M - \overline{W^u(x)}$.

Como $M=\overline{W^u(x)}\cup \left(M-\overline{W^u(x)}\right)$ e $A\neq\emptyset$, além disso B é aberto, supondo que A é aberto teríamos que $B=M-\overline{W^u(x)}=\emptyset$ e daí $\overline{W^u(x)}=M$ o que queríamos provar.

Assim, só faltaria mostrar que $\overline{W^u(x)}$ é aberto para todo $x \in M$.

Afirmação 1.3. $\overline{W^u(x)}$ é aberto para todo $x \in M$.

 $\frac{\mathrm{Dado}}{\overline{W^u(x)}}$, provaremos que existe uma vizinhança N tal que $z \in N \subset \overline{W^u(x)}$.

Seja $z \in \overline{W^u(x)}$, então pelo Teorema de vizinhança produto local, existe uma vizinhança produto $N = N_{\delta}(z)$ contendo z, onde $\delta > 0$.

Daqui, basta mostrar que $N \subset \overline{W^u(x)}$.

Ou seja, dado $q \in N$, arbitrário queremos mostrar que $q \in \overline{W^u(x)}$. Isto é, para todo V_q (vizinhança de q) existe $p' \in V_q \cap W^u(x)$.

Com esse fim, enunciamos o seguinte resultado cuja prova será feito depois de mostrar que $N \subset \overline{W^u(x)}$.

Resultado 1.1. $N \cap Per(\phi) \subset \overline{W^u(x)}$.

Agora, provemos que $N \subset \overline{W^u(x)}$.

De fato, seja $q \in N$, logo pelo Teorema 1.5 temos que $M = \overline{Per(\phi_t)}$ e como $N \subset M$, segue que, $q \in \overline{Per(\phi_t)}$, isto é, para todo V_q existe $p \in V_q \cap per(\phi_t)$.

Por outro lado, observe-se que:

- i) Se $V_q \subset N$ temos que, $p \in N \cap per(\phi_t)$.
- ii) Se $V_q \not\subseteq N$, pela densidade de pontos periódicos existe um ponto periódico tal que $p \in per(\phi_t) \cap V_q \cap N$ isto é $p \in per(\phi_t) \cap N$.

Isto é, em qualquer caso temos que $p \in per(\phi_t) \cap N$.

Logo pelo Resultado 1.1 temos que $N \cap Per(\phi) \subset \overline{W^u(x)}$ de onde segue que $p \in \overline{W^u(x)}$, daí para toda vizinhança de p que denotamos por V_p existe $p' \in V_p \cap W^u(x)$.

Logo, como isto se cumpre para todo V_p , em particular se cumpre para $V_p \subset V_q$, de onde segue que $p' \in V_q \cap W^u(x)$ para todo V_q .

Logo

$$V_q \cap W^u(x) \neq \emptyset, \forall V_q.$$

Daí, segue que

$$q \in \overline{W^u(x)}$$
.

Provando assim que,

$$N \subset \overline{W^u(x)}$$
.

Demonstração: Do Resultado 1.1

Primeiro, observemos que pela observação 3, $\overline{W^u(x)}$ é \mathcal{F}^u -saturado e como $z \in \overline{W^u(x)}$ temos que,

$$W^{u}(z) \subset \overline{W^{u}(x)}. \tag{1.8}$$

Agora, desde que $per(\phi_t)$ é denso em M temos que é denso em N, existe $p \in N \cap Per(\phi)$, logo pelo teorema de vizinhança produto local existe $w \in W^s_{2\delta}(p) \cap W^{uu}_{2\delta}(z)$.

Logo, como $w \in W^s_{2\delta}(p) \subset W^s(p)$ temos,

$$\lim_{t_i \to \infty} \phi_{t_i}(w) = p. \tag{1.9}$$

Por outro lado, como $w \in W^{uu}_{2\delta}(z) \subset W^{uu}(z)$ temos que $\phi_{t_i}(w) \in \phi_{t_i}(W^{uu}(z)) \subset W^u(z)$ de onde,

$$\phi_{t_i}(w) \in W^u(z)$$
.

Logo, como $W^u(z) \subset \overline{W^u(x)}$ por (1.8), temos que

$$\phi_{t_i}(w) \in \overline{W^u(x)}$$

daqui, segue por (1.9) que, $p \in \overline{W^u(x)}$.

Assim, concluímos com a prova do Resultado 1.1 e a prova do teorema.

Capítulo 2

Resultado Principal

Neste capítulo nosso objetivo é apresentar a prova do teorema que motivou este estudo, cujo enunciado é dado a seguir.

Teorema Principal. Sejam M uma variedade Riemanniana compacta, conexa, suave e $\phi: M \times \mathbb{R} \longrightarrow M$ um fluxo Anosov de classe C^r $(r \ge 1)$ tal que $\Omega(\phi_t) = M$. Então existem exatamente duas possibilidades:

- i) Cada variedade estável forte e instável forte é denso em M, ou
- ii) ϕ_t é a suspensão de um difeomorfismo de Anosov de uma subvariedade compacta C^1 de codimensão um em M.

Para todos os resultados declarados neste capitulo os termos estável e instável podem ser trocadas entre si.

As principais referencias são: [11], [13], [14], [17], [22] e outras referencias que podem ser de complementação da teoria foram [3], [15] e [23].

2.1 Proposições e Lemas Prévios

Sabemos que, se $\Omega(\phi_t) = M$ para um fluxo Anosov então $W^u(x)$ e $W^s(x)$ são densos em M para cada $x \in M$ (ver Teorema 1.6). Mas nem sempre é o caso de que cada uma das folhas de \mathcal{F}^{uu} ou de \mathcal{F}^{ss} é denso em M. Isto não ocorre, por exemplo, se ϕ_t é a suspensão de um homeomorfismo Anosov. Neste caso, cada folha de \mathcal{F}^{uu} e cada folha de \mathcal{F}^{ss} situa-se numa subvariedade compacta de codimensão 1 em M. Este fato é um claro resultado da seguinte proposição.

Proposição 2.1. Se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M. Então

i) M é um fibrado sobre S^1 com fibra $\overline{W^{uu}(p)}$, e

ii) ϕ_t é a suspensão de um homeomorfismo $\phi_r|_{\overline{W^{uu}(p)}}$, onde r é o período de p.

A provar da Proposição 2.1 é uma consequência do seguinte Lema onde afirma que as fibras são disjuntas.

Lema 2.1. Se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M. Então $\phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)} = \emptyset$ para todo $t \in (0, r)$, onde r é o período de p.

A demonstração do Lema 2.1 será feita depois de concluir com a prova da Proposição 2.1.

Demonstração: Da Proposição 2.1

Começamos a prova mostrando que além das fibras serem disjuntas, elas formam de fato toda a variedade, isto é:

$$M = \bigcup_{0 \le t \le r} \phi_t \left(\overline{W^{uu}(p)} \right).$$

Para concluir este fato, observemos que:

$$\bigcup_{0 \le t \le r} \phi_t \left(\overline{W^{uu}(p)} \right) = \bigcup_{t \in \mathbb{R}} \phi_t \left(\overline{W^{uu}(p)} \right) \supset \bigcup_{t \in \mathbb{R}} \phi_t \left(W^{uu}(p) \right) = W^u(p).$$

Agora, como pelo Teorema 1.6 $W^u(p)$ é denso em M e $\bigcup_{0 \le t \le r} \phi_t \left(\overline{W^{uu}(p)} \right)$ é fechado em M, segue que,

$$M = \bigcup_{0 \le t \le r} \phi_t \left(\overline{W^{uu}(p)} \right).$$

Note que, uma vez que as fibras são disjuntas a união acima é disjunta.

Agora, observemos que a aplicação projeção $\pi: M \longrightarrow S^1$ dada por $\phi_t(x) \longmapsto t \pmod{r}$ onde $x \in \overline{W^{uu}(p)}$ está bem definida desde que $M = \bigcup_{0 \le t \le r} \phi_t \left(\overline{W^{uu}(p)}\right)$ é disjunta.

Daí que M é um fibrado sobre S^1 com fibra $\overline{W^{uu}(p)}$.

Para finalizar a demonstração do teorema, só falta mostrar a parte (ii), isto é que ϕ_t é a suspensão de $\phi_r|_{\overline{W^{uu}(p)}}$.

Para isso observemos que, $\phi_r|_{\overline{W^{uu}(p)}}: \overline{W^{uu}(p)} \longrightarrow \overline{W^{uu}(p)}$ definido por $x \longmapsto \phi_r(x)$ é um homeomorfismo, desde que ϕ_r é um difeomorfismo fixando r.

Logo, desde que M pode ser escrito como união disjunta de $\phi_t\left(\overline{W^{uu}(p)}\right)$ onde $t \in [0,r)$, em $[0,r] \times \overline{W^{uu}(p)}$ podemos identificar $(r,x) \sim (0,\phi_r(x))$ mediante a seguinte aplicação:

$$H: \frac{[0,r] \times \overline{W^{uu}(p)}}{\sim} \longrightarrow M$$

$$(t,x) \longmapsto \phi_t(x).$$

Claramente H é um homeomorfismo e $H(r,x) = \phi_r(x) = H(0,\phi_r(x))$ de onde

$$\frac{[0,r] \times \overline{W^{uu}(p)}}{\sim} \simeq M.$$

Assim, concluímos que $\phi_t: M \longrightarrow M$ é o fluxo de suspensão.

Agora, mostremos o Lema 2.1, com esse fim enunciamos o seguente resultado.

Lema 2.2. Se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M e $\phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)} \neq \emptyset$ para todo $t \in (0,r)$, então $\phi_t\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$, onde r é o período de p.

A prova do Lema 2.2 será feita depois da demonstração do Lema 2.1.

Demonstração: Do Lema 2.1

Mostraremos que, se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M. Então $\phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)} = \emptyset$ para todo $t \in (0,r)$, onde r é o período de p.

De fato:

Suponhamos, por contradição, que, existe $t \in (0,r)$ tal que

$$\phi_t\left(\overline{W^{uu}(p)}\right)\cap\overline{W^{uu}(p)}\neq\emptyset.$$

Afirmação 2.1. $A=\{t\in\mathbb{R}:\phi_t\left(\overline{W^{uu}(p)}\right)=\overline{W^{uu}(p)}\}$ é denso em \mathbb{R} .

Queremos mostrar que, $\overline{A} = \mathbb{R}$.

- i) claramente, $\overline{A} \subset \mathbb{R}$.
- ii) Agora, provemos que $\mathbb{R} \subset \overline{A}$.

Dado $s \in \mathbb{R}$ provaremos que $s \in \overline{A}$. Isto é, para todo $\delta > 0$ existe $t_1 \in (s - \delta, s + \delta) \cap A$.

Sejam $s \in \mathbb{R}$ e $\delta > 0$ tomemos $t \in (0, \delta)$ tal que $\phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)} \neq \emptyset$. Então pelo Lema 2.2 tem-se que,

$$\phi_t\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}.$$

Daí, também tem-se que,

$$\phi_{2t}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$$

e assim sucessivamente

$$\phi_{nt}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}.$$

De onde segue que, $nt \in A$, $\forall n \in \mathbb{Z}$.

Logo, como $|nt - (n-1)t| = |nt - nt + t| = |t| < \delta$. Existe $n \in \mathbb{Z}^+$ tal que,

$$nt \in (s - \delta, s + \delta).$$

Pelo que, $nt \in (s - \delta, s + \delta) \cap A$. Daí, segue que $(s - \delta, s + \delta) \cap A \neq \emptyset$.

Assim,
$$A = \{t \in \mathbb{R} : \phi_t\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}\}$$
 é denso em \mathbb{R} .

De onde se conclui a prova da Afirmação 2.1.

Agora, observemos que a Afirmação 2.1 implica que $\overline{W^{uu}(p)}$ seja denso em M. Pois,

Dados $x \in M$ e $\delta > 0$ como $M = \bigcup_{0 \le t \le r} \phi_t \left(\overline{W^{uu}(p)} \right)$ então $x \in \phi_T \left(\overline{W^{uu}(p)} \right)$ para algum $T \in [0, r]$, daí que $x = \phi_T(y)$ onde $y \in \overline{W^{uu}(p)}$.

Agora, observemos que pela continuidade do fluxo ϕ existe $\epsilon>0$ tal que se $t\in [T-\epsilon,T+\epsilon]$ então,

$$\phi_t(y) \in B_{\delta}(x)$$
.

Por outro lado, como pela Afirmação 2.1, A é denso em \mathbb{R} existe $t^* \in (T - \epsilon, T + \epsilon) \cap A$.

Daqui, como $t^* \in (T - \epsilon, T + \epsilon)$ então,

$$\phi_{t^*}(y) \in B_{\delta}(x)$$
.

Além disso, como $t^* \in A$ então $\phi_{t^*}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$.

Logo, como $y \in \overline{W^{uu}(p)}$ temos que $\phi_{t^*}(y) \in \phi_{t^*}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$.

Assim,

$$\phi_{t^*}(y) \in \overline{W^{uu}(p)}.$$

daí que,

$$\phi_{t^*}(y) \in \overline{W^{uu}(p)} \cap B_{\delta}(x)$$

logo,

$$\overline{W^{uu}(p)} \cap B_{\delta}(x) \neq \emptyset.$$

De onde $\overline{W^{uu}(p)}$ é denso em M, i.e $\left(\overline{\overline{W^{uu}(p)}}=M\right)$.

 $\underline{\overline{W^{uu}(p)}}$ como $\overline{W^{uu}(p)}$ é fechado então temos que $\overline{\overline{W^{uu}(p)}} = \overline{W^{uu}(p)}$, daí que $\overline{W^{uu}(p)} = M$, isto é que $W^{uu}(p)$ é denso em M, contradizendo a hipótese.

Isto conclui a prova do Lema 2.1.

Para finalizar só falta mostrar o Lema 2.2, que foi usado para provar o Lema 2.1. Com esse fim provaremos primeiro o seguinte resultado, logo usando esse fato concluiremos com a prova do Lema 2.2.

Lema 2.3. Se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M. Então $\overline{W^{uu}(p)}$ satisfaz:

- i) $\overline{W^{uu}(p)}$ é fechada em M.
- $ii) \ \overline{W^{uu}(p)} \ \acute{e} \ \mathcal{F}^{uu}$ -saturado.

$$iii) \ \phi_r\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}.$$

Além disso, nenhum subconjunto próprio de $\overline{W^{uu}(p)}$ satisfaz (i), (ii) e (iii).

Para mostrar o Lema 2.3 precisaremos de três afirmações que serão enunciados em seguida e provadas depois de mostrar este lema.

Afirmação 2.2. Se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M. Então existe um subconjunto $K \subset \overline{W^{uu}(p)}$ (não-vazio) tal que:

- i) K é fechado em M.
- ii) $K \notin \mathcal{F}^{uu}$ -saturado.
- iii) $\phi_r(K) = K$.

E tal que, nenhum subconjunto próprio de K satisfaz (i), (ii) e (iii).

O seguinte resultado afirma que M é união de $\phi_t(K)$ onde $t \in [0, r]$, mas não afirma que é união disjunta, é importante destacar isso.

Afirmação 2.3. Se $p \in M$ é um ponto periódico para um fluxo Anosov ϕ tal que $W^{uu}(p)$ não é denso em M e K é como na Afirmação 2.2, então

$$M = \bigcup_{0 \le t \le r} \phi_t(K)$$

Por outro lado, o seguinte resultado afirma que o conjunto minimal K e $\phi_t(K)$ não se intersectam para todo $t \in (0, r)$, claramente quando $K \neq \phi_t(K)$. Sem mais preâmbulos enunciamos.

Afirmação 2.4. Se 0 < t < r e $K \cap \phi_t(K) \neq \emptyset$ então $K = \phi_t(K)$.

As afirmações 2.2, 2.3 e 2.4 é o que precisamos, para mostrar o Lema 2.3. A ideia é provar que $K = \overline{W^{uu}(p)}$ e daí usando a Afirmação 2.2 obter o resultado.

Demonstração: Do Lema 2.3

Queremos mostrar que, se $p \in M$ é um ponto periódico de período r de um fluxo Anosov ϕ então $\overline{W^{uu}(p)}$ satisfaz:

- i) $\overline{W^{uu}(p)}$ é fechada em M.
- ii) $\overline{W^{uu}(p)}$ é \mathcal{F}^{uu} -saturado.
- iii) $\phi_r\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}.$

Além disso, nenhum subconjunto próprio de $\overline{W^{uu}(p)}$ satisfaz (i), (ii) e (iii).

De fato:

Pela Afirmação 2.3 temos que,

$$M = \bigcup_{0 \le t \le r} \phi_t(K).$$

Daí, dado $p \in M = \bigcup_{0 \le t \le r} \phi_t(K)$ tem-se que,

$$p \in \phi_T(K) \tag{2.1}$$

para algum $T \in [0, r]$.

Então, $\phi_{-T}(p) \in K$. Logo, pela Afirmção 2.2 como K é \mathcal{F}^{uu} -saturado temos que, $W^{uu}(\phi_{-T}(p)) \subset K$. Pelo que, $\phi_{-T}(W^{uu}(p)) \subset K$. De onde, segue que $\phi_{-T}(W^{uu}(p)) \subset K$. Logo, pela Afirmção 2.2 como K é fechado temos que, $\overline{\phi_{-T}(W^{uu}(p))} \subset K$. Daqui, segue que $\phi_{-T}\left(\overline{W^{uu}(p)}\right) \subset K$. Assim,

$$\overline{W^{uu}(p)} \subset \phi_T(K).$$

Daqui e do fato que $K \subset \overline{W^{uu}(p)}$ pela Afirmação 2.2, temos que

$$K \subset \phi_T(K)$$
.

Então,

$$K \cap \phi_T(K) = K \neq \emptyset.$$

Logo, como K $\cap \phi_T(K) \neq \emptyset$, pela Afirmação 2.4 segue que,

$$K = \phi_T(K)$$
.

Por outro lado, de (2.1) temos que $p \in \phi_T(K)$ então $p \in K$. Agora, como K é \mathcal{F}^{uu} -saturado, temos que

$$W^{uu}(p) \subset K$$
.

De onde, $\overline{W^{uu}(p)} \subset \overline{K}$. Logo, como K é fechado, tem-se que,

$$\overline{W^{uu}(p)} \subset K.$$

Assim,

$$K = \overline{W^{uu}(p)}.$$

Logo usando a Afirmação 2.2, o Lema 2.3 fica provada.

Agora passamos a mostrar as três afirmações que foram usados para provar o Lema 2.3.

Demonstração: Da Afirmação 2.2

Mostraremos que, se $p \in M$ é um ponto periódico de período r de um fluxo Anosov ϕ , então existe um subconjunto $K \subset \overline{W^{uu}(p)}$ (não-vazio) tal que:

- i) K é fechado em M.
- ii) $K \in \mathcal{F}^{uu}$ -saturado.
- iii) $\phi_r(K) = K$.

E tal que, nenhum subconjunto próprio de K satisfaz (i), (ii) e (iii).

De fato:

Seja,
$$\Im = \{ \mu \subset \overline{W^{uu}(p)} : \mu \neq \emptyset, \mu \text{ \'e fechado}, \mu \text{ \'e } \mathcal{F}^{uu}\text{-saturado e } \phi_r(\mu) = \mu \}.$$

Consideremos em \Im a ordem parcial induzida por inclusão de conjunto. Logo, dada uma sequência $\mu_1 \supset \mu_2 \supset \mu_3 \supset \dots$ de elementos de \Im observemos que,

i)
$$\mu^* = \bigcap_{i \in \mathbb{N}} \mu_i \neq \emptyset$$
 desde que $\mu_i \neq \emptyset$, $\forall i \in \mathbb{N}$.

ii)
$$\mu^* = \bigcap_{i \in \mathbb{N}} \mu_i$$
 é fechado.

Pois, μ_i é fechado para todo $i \in \mathbb{N}$. Logo, a intersecção arbitraria de fechados é fechada.

iii)
$$\mu^* = \bigcup_{i \in \mathbb{N}} \mu_i$$
 é \mathcal{F}^u -saturado.

Pois, dado $z \in \mu^* = \bigcap_{i \in \mathbb{N}} \mu_i$ temos que, $z \in \mu_i$ para todo $i \in \mathbb{N}$. Logo, como μ_i é \mathcal{F}^{uu} -saturado, temos que,

$$W^{uu}(z) \subset \mu_i, \forall i \in \mathbb{N}.$$

Daí que,

$$W^{uu}(z) \subset \bigcap_{i \in \mathbb{N}} \mu_i = \mu^*.$$

Assim,

$$W^{uu}(z) \subset \mu^*$$
.

iv)
$$\phi_r(\mu^*) = \mu^*$$
.
Pois,

$$\phi_r(\mu^*) = \phi_r\left(\bigcap_{i \in \mathbb{N}} \mu_i\right) = \bigcap_{i \in \mathbb{N}} \phi_r(\mu_i) = \bigcap_{i \in \mathbb{N}} \mu_i = \mu^*.$$

Além disso, $\mu^* \subset \mu_i$, $\forall i \in \mathbb{N}$.

Então pelo lema de Zorn´s, ③ contém um elemento minimal, claramente satisfazendo as condições de acima. Isto concluí a prova da Afirmação 2.2.

Demonstração: Da Afirmação 2.3

Queremos mostrar que, $M = \bigcup_{0 \le t \le r} \phi_t(K)$.

Para provar esta afirmação precisamos de dois resultados que apresentamos em seguida, mas antes dele denotemos:

$$\bigcup_{0 \le t \le r} \phi_t(K) = K^*.$$

Resultado 2.1. $K^* \notin \mathcal{F}^u$ -saturado.

De fato, seja $z \in K^* = \bigcup_{0 \le t \le r} \phi_t(K)$, então existe $s \in [0, r]$ tal que $z \in \phi_s(K)$. Daqui, existe $x \in K$ tal que $z = \phi_s(x)$. Agora, note que, basta mostrar que $\phi_t(W^{uu}(z)) \subset K^*$ para todo $t \in \mathbb{R}$. Já que daqui teríamos que,

$$W^{u}(z) = \bigcup_{t \in \mathbb{R}} \phi_t \left(W^{uu}(z) \right) \subset K^*.$$

Com esse fim, observemos que

$$\phi_t(W^{uu}(z)) = W^{uu}(\phi_t(z))$$

$$= W^{uu}(\phi_t(\phi_s(x)))$$

$$= W^{uu}(\phi_{t+s}(x))$$

$$= \phi_{t+s}(W^{uu}(x)).$$

Isto é,

$$\phi_t(W^{uu}(z)) = \phi_{t+s}(W^{uu}(x)).$$

Logo, tomando t+s=nr+T onde $0\leq T\leq r$ e $n\in\mathbb{Z}.$ Temos que,

$$\phi_{t+s}(W^{uu}(x)) = \phi_{nr+T}(W^{uu}(x)) = \phi_T(\phi_{nr}(W^{uu}(x))).$$

De onde,

$$\phi_t(W^{uu}(z)) = \phi_T(\phi_{nr}(W^{uu}(x))).$$
 (2.2)

Por outro lado, como K é \mathcal{F}^{uu} -saturado, para $x \in K$ tem-se que $W^{uu}(x) \subset K$. Então,

$$\phi_r(W^{uu}(x)) \subset \phi_r(K) = K$$

pelo que,

$$\phi_r(W^{uu}(x)) \subset K$$

daqui, também tem-se que $\phi_{2r}(W^{uu}(x)) \subset \phi_r(K) = K$ de onde,

$$\phi_{2r}(W^{uu}(x)) \subset K$$

assim sucessivamente temos que,

$$\phi_{nr}(W^{uu}(x)) \subset K.$$

Então,

$$\phi_T(\phi_{nr}(W^{uu}(x))) \subset \phi_T(K) \subset \bigcup_{0 \le t \le r} \phi_t(K) = K^*$$

Isto é,

$$\phi_T(\phi_{nr}(W^{uu}(x))) \subset K^*.$$

Agora, como por (2.2) temos que $\phi_T(\phi_{nr}(W^{uu}(x))) = \phi_t(W^{uu}(z))$.

Concluímos que,

$$\phi_t(W^{uu}(z)) \subset K^*.$$

de onde,

$$W^u(z) \subset K^*$$

Assim, concluindo a prova do Resultado 2.1.

Resultado 2.2. K^* é fechado em M.

De fato, temos que

$$\begin{split} K^* &= \bigcup_{0 \leq t \leq r} \phi_t(K) = \bigcup_{0 \leq t \leq r} \phi(t,K) \\ &= \bigcup_{0 \leq t \leq r, x \in K} \phi(t,x) \\ &= \{\phi(t,x) : 0 \leq t \leq r, x \in K\} \\ &= \phi([0,r] \times K). \end{split}$$

Isto é,

$$K^* = \phi([0, r] \times K).$$

Agora, como $K\subset M$ é fechado e M compacto, temos que K é compacto. Daqui segue que,

$$[0, r] \times K$$
 é compacto.

Logo, como ϕ é continua, segue que $\phi([0,r] \times K)$ é compacto.

Assim, $K^* = \phi([0, r] \times K)$ é compacto. Daí que,

$$K^*$$
 é fechado.

De onde se conclui a prova do Resultado 2.2.

Agora, já temos as ferramentas necessárias para mostrar a Afirmação 2.3.

Pois, como pelo Resultado 2.1 K^* é \mathcal{F}^u -saturado, dado $z \in K^*$ temos que,

$$W^u(z) \subset K^*$$

então,

$$\overline{W^u(z)} \subset \overline{K^*}.$$

Logo, como $W^u(z)$ é denso em M pelo Teorema 1.6 temos que, $M=\overline{W^u(z)}$. De onde,

$$M = \overline{W^u(z)} \subset \overline{K^*}.$$

E por outro lado, como pelo Resultado 2.2 K^* é fechado i.e $(\overline{K^*} = K^*)$ temos que, $M \subset K^*$.

Daí, como

$$K^* = \bigcup_{0 \le t \le r} \phi_t(K) \subset M$$

temos que, $M = K^*$.

Isto é,

$$M = \bigcup_{0 \le t \le r} \phi_t(K).$$

Isto concluí a prova da Afirmação 2.3.

Demonstração: Da Afirmação 2.4

Mostraremos que, se 0 < t < r e $K \cap \phi_t(K) \neq \emptyset$ então $K = \phi_t(K)$.

De fato:

I) Provemos que, $K \subset \phi_t(K)$.

Observe que, $K \cap \phi_t(K)$ satisfaz as propriedades (i), (ii) e (iii) da afirmação 2.2 i.e:

- i) Provemos que, $K \cap \phi_t(K)$ é fechado.
 - Pois, como K é fechado e ϕ_t é um difeomorfismo fixando t, temos que $\phi_t(K)$ é fechado. Logo, como interseção de fechados é fechada temos que $K \cap \phi_t(K)$ é fechado.
- ii) Provemos que, $K \cap \phi_t(K)$ é \mathcal{F}^{uu} -saturado.

Dado $x \in K \cap \phi_t(K)$ queremos mostrar que, $W^{uu}(x) \subset K \cap \phi_t(K)$. Como,

$$x \in K \cap \phi_t(K)$$
.

Temos que, $x \in K$. Logo, como K é \mathcal{F}^{uu} -saturado temos que:

$$W^{uu}(x) \subset K. \tag{2.3}$$

Além disso, temos que $x \in \phi_t(K)$ então, $\phi_{-t}(x) \in K$. Agora, como K é \mathcal{F}^{uu} -saturado temos que,

$$W^{uu}(\phi_{-t}(x)) \subset K$$

pelo que, $\phi_{-t}(W^{uu}(x)) \subset K$. Então,

$$W^{uu}(x) \subset \phi_t(K). \tag{2.4}$$

Logo, de (2.3) e (2.4) segue que,

$$W^{uu}(x) \subset K \cap \phi_t(K)$$
.

Assim, $K \cap \phi_t(K)$ é \mathcal{F}^{uu} -saturado.

iii) Provemos que, $\phi_r(K \cap \phi_t(K)) = K \cap \phi_t(K)$. pois,

$$\phi_r(K \cap \phi_t(K)) = \phi_r(K) \cap \phi_r(\phi_t(K))$$

$$= \phi_r(K) \cap \phi_{r+t}(K)$$

$$= \phi_r(K) \cap \phi_{t+r}(K)$$

$$= \phi_r(K) \cap \phi_t(\phi_r(K))$$

$$\stackrel{\phi_r(K)=K}{=} K \cap \phi_t(K).$$

De onde,

$$\phi_r(K \cap \phi_t(K)) = K \cap \phi_t(K).$$

Assim, $K \cap \phi_t(K)$ é um conjunto que satisfaz as propriedades (i), (ii) e (iii) da Afirmação 2.2

Por outro lado, pela Afirmação 2.2 como K é o conjunto minimal satisfazendo (i),(ii) e (iii) temos que,

$$K \subset K \cap \phi_t(K)$$
.

Daí, como $K \cap \phi_t(K) \subset K$ temos que, $K \cap \phi_t(K) = K$.

De onde,

$$K \subset \phi_t(K)$$
.

II) Agora, provemos que $\phi_t(K) \subset K$.

Note que, para todo $s \in \mathbb{R}$, $\phi_s(K)$ satisfaz as propriedades (i), (ii) e (iii) da Afirmação 2.2 i.e:

- i) Provemos que, $\phi_s(K)$ é fechado. Pois, como K é fechado e ϕ_t é um difeomorfismo fixando s, temos que $\phi_s(K)$ é fechado.
- ii) Provemos que, $\phi_s(K)$ é \mathcal{F}^{uu} -saturado.

Dado $x \in \phi_s(K)$ queremos mostrar que, $W^{uu}(x) \subset \phi_s(K)$.

De fato:

Como $x \in \phi_s(K)$ então, $\phi_{-s}(x) \in K$. Logo, como K é \mathcal{F}^{uu} -saturado temos que,

$$W^{uu}(\phi_{-s}(x)) \subset K$$

pelo que,

$$\phi_{-s}(W^{uu}(x)) \subset K$$

de onde,

$$W^{uu}(x) \subset \phi_s(K)$$
.

iii) Provemos que, $\phi_r(\phi_s(K)) = \phi_s(K)$. Pois,

$$\phi_r\left(\phi_s(K)\right) = \phi_{r+s}(K) = \phi_{s+r}(K) = \phi_s\left(\phi_r(K)\right) \stackrel{\phi_r(K) = K}{=} \phi_s(K)$$

de onde,

$$\phi_r\left(\phi_s(K)\right) = \phi_s(K).$$

Agora, como para todo $s \in \mathbb{R}$, $\phi_s(K)$ satisfaz as propriedades (i), (ii) e (iii) da firmação 2.2 em particular satifaz para s = -t. Logo, tem-se que $\phi_{-t}(K)$ também satisfaz as propriedades (i), (ii) e (iii) da firmação 2.2.

Daí, pela firmação 2.2 como K é um conjunto minimal satisfazendo (i), (ii) e (iii) temos que:

$$K \subset \phi_{-t}(K)$$
.

Dai, segue que

$$\phi_t(K) \subset K$$
.

Assim,

$$K = \phi_t(K)$$
.

Isto concluí a prova da Afirmação 2.4.

Agora já temos as ferramentas necessárias para provar o Lema 2.2.

Demonstração: Do Lema 2.2

Isto é uma consequência imediata do Lema 2.3 e a Afirmação 2.4. Já que pelo Lema 2.3 temos que, $\overline{W^{uu}(p)} = K$. Logo da Afirmação 2.4 segue que $\phi_t\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$ para todo $t \in (0,r)$.

No seguinte lema damos uma condição necessária para que a variedade instável forte seja densa em M para todo ponto $x \in M$.

Lema 2.4. Seja $\Omega(\phi_t) = M$ para um fluxo Anosov. Se $W^{uu}(p)$ é denso em M para todos os pontos periódicos p então $W^{uu}(x)$ é denso em M para todo $x \in M$.

Demonstração:

Mostraremos que $\overline{W^{uu}(x)} = M$ para todo $x \in M$.

Como $\overline{W^{uu}(x)} \subset M$ só faltaria mostrar que $M \subset \overline{W^{uu}(x)}$.

De fato:

Seja $W \in \mathcal{F}^{uu}$ fixado arbitrariamente uma variedade instável forte, x um ponto arbitrário de M e $\epsilon > 0$ provaremos que $B_{\epsilon}(x) \cap W \neq \emptyset$.

Como $x \in M$ e ϕ_t é um fluxo Anosov então existe uma vizinhança produto $N_r(x)$ onde r > 0 definido por:

$$N_r(x) = \bigcup_{y \in B^{uu}(x)} B_r^s(y).$$

Logo como $N_r(x)$ é aberto, dado r > 0 existe $\delta = \delta(r)$ tal que $B_{\delta}(x) \subset N_r(x)$ para todo $x \in M$.

Por outro lado, como os pontos periódicos são densos em M, existe uma cobertura de bolas abertas $B_{\delta(\frac{\varepsilon}{2})}(p_i)$ de M, onde p_i é ponto periódico de período t_i respetivamente e $i \in \mathbb{N}$. Agora como M é compacto, temos que toda cubertura aberto admite um sub cobertura finito $B_{\delta(\frac{\varepsilon}{2})}(p_1), \ldots, B_{\delta(\frac{\varepsilon}{2})}(p_k)$.

Isto é,

$$M \subset \bigcup_{i=1}^{k} B_{\delta(\frac{\epsilon}{2})}(p_i) \tag{2.5}$$

Afirmação 2.5. Existe t > 0 tal que $\phi_t(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ para $i = 1, \ldots, k$.

Para provar esta afirmação precisamos os seguintes resultados.

Resultado 2.3. Existe T > 0 tal que $B_T^{uu}(p_i) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ para $i = 1, \ldots, k$.

De fato, pela hipótese como $W^{uu}(p_i)$ é denso em M para todo $p_i \in per(\phi_t)$, temos que $M \subset \overline{W^{uu}(p_i)}$. Daí, dado $x \in M$ tem-se que $x \in \overline{W^{uu}(p_i)}$, somente, se para todo vizinhança de x denotado por V_x , tem-se que $V_x \cap W^{uu}(p_i) \neq \emptyset$. Como isto ocorre para toda vizinhança de x, tomemos $V_x = B_{\frac{\epsilon}{2}}(x)$.

Daí que,

$$B_{\frac{\epsilon}{2}}(x) \cap W^{uu}(p_i) \neq \emptyset.$$

Agora, podemos escolher $r_i > 0$, i = 1, ...k com $B_{r_i}^{uu}(p_i) \subset W^{uu}(p_i)$

tal que,

$$B_{\frac{\epsilon}{2}}(x) \cap B_{r_i}^{uu}(p_i) \neq \emptyset.$$

Logo, tomando $T=\max_{1\leq i\leq k}(r_i)$ temos que $B^{uu}_{r_i}(p_i)\subset B^{uu}_T(p_i)$ para todo i=1,...,k. De onde,

$$B_{\frac{\epsilon}{2}}(x) \cap B_T^{uu}(p_i) \neq \emptyset.$$

Assim se concluí a prova do Resultado 2.3, (ver figura 2.1).

Resultado 2.4. Existe c > 0 tal que $\phi_t(B_T^{uu}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ onde $|t| < c.t_i$ (i = 1, ..., k).

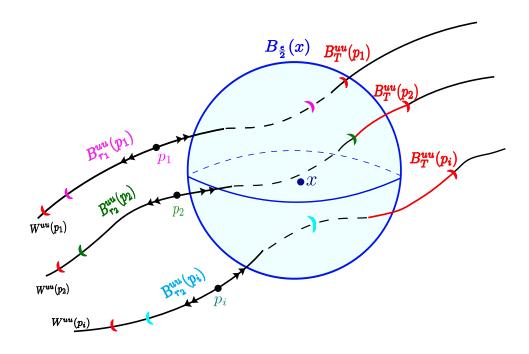


Figura 2.1: Resultado 2.3

De fato, desde que $B_T^{uu}(p_i) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ pelo Resultado 2.3 e $B_{\frac{\epsilon}{2}}(x)$ é aberto, existem c_i tal que $\phi_t(B_T^{uu}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ para $|t| < c_i.t_i$ e i = 1, ..., k.

Pois:

Seja $z_i \in B^{uu}_T(p_i) \cap B_{\frac{\epsilon}{2}}(x)$. Como $B_{\frac{\epsilon}{2}}(x)$ é aberta existe $\delta_i > 0$ tal que $B_{\delta_i}(z_i) \subset B_{\frac{\epsilon}{2}}(x)$. Logo pela continuidade das folhas instáveis fortes existe $B_{\delta_i'}(p_i)$ onde $\delta_i' > 0$.

Agora, tomemos $c_i > 0$, tal que $\phi_t(p_i) \in B_{\delta'_i}(p_i)$ para $|t| < c_i.t_i$ e i = 1,...,k. logo como $\phi_t(p_i) \in B^{uu}_T(\phi_t(p_i))$ Temos que $B^{uu}_T(\phi_t(p_i)) \cap B_{\delta'_i}(p_i) \neq \emptyset$, novamente pela continuidade das folhas instáveis fortes, temos,

$$B_T^{uu}(\phi_t(p_i)) \cap B_{\delta_i}(z_i) \neq \emptyset.$$

Daqui, como $B_T^{uu}(\phi_t(p_i)) \subset \phi_t(B_T^{uu}(p_i))$, segue que $\phi_t(B_T^{uu}(p_i)) \cap B_{\delta_i}(z_i) \neq \emptyset$.

Agora, como $B_{\delta_i}(z_i) \subset B_{\frac{\epsilon}{2}}(x)$, temos que

$$\phi_t(B_T^{uu}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$$

onde $|t| < c_i \cdot t_i \ (i = 1, \dots, k)$.

Isto é, existem $c_i > 0$ tal que $\phi_t(B^{uu}_T(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ onde $|t| < c_i.t_i$ (i = 1, ..., k).

Agora, tomando $c = \min_{1 \le i \le k} (c_i)$ tem-se que

$$\phi_t(B_T^{uu}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$$

para $|t| < c.t_i \ (i = 1, ..., k).$

Isto é, existe c>0 tal que $\phi_t(B^{uu}_T(p_i))\cap B_{\frac{\epsilon}{2}}(x)\neq\emptyset$ onde $|t|< c.t_i$ $(i=1,\ldots,k).$

De onde se concluí a prova do Resultado 2.4, (ver figura 2.2).

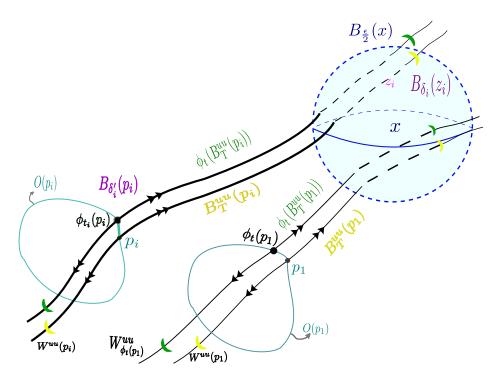


Figura 2.2: Resultado 2.4

Resultado 2.5. Se t é suficientemente grande então

$$B_T^{uu}(p_i) \subset \phi_{n_i t_i}(B_{\frac{\epsilon}{2}}^{uu}(p_i))$$

para n_i que depende de t e $n_i \in \mathbb{Z}$ onde (i = 1, ..., k).

De fato, com a finalidade de mostrar este resultado observemos que:

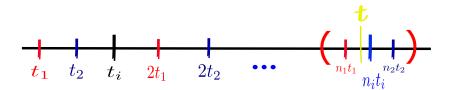
Observação 4. Dados $t_l, t_j \in \mathbb{R}$ existem $n_l, n_j \in \mathbb{Z}$ e c > 0, tal que

$$|n_l t_l - n_j t_j| < c.t_i \text{ onde } t_i = \min_{1 \le l, j \le k} (t_l, t_j).$$

Daí, existe t > 0 arbitrariamente grande tal que $|t - n_i t_i| < ct_i$ para algum $n_i \in \mathbb{Z}$ que depende de t e (i = 1, ..., k).

Para maiores detalhes desta observação ver [15].

Agora, comecemos fazer a prova do Resultado 2.5.



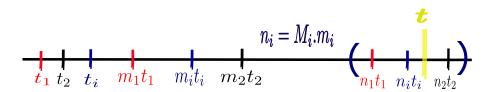
Desde que p_i é ponto periódico e $B^{uu}_{\frac{\epsilon}{2}}(p_i) \subset \phi_{t_i}(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \subset \phi_{2t_i}(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \subset \dots \subset \dots$ existe $m_i \in \mathbb{Z}^+$ tal que,

$$B_T^{uu}(p_i) \subset \phi_{m_i t_i}(B_{\frac{\epsilon}{2}}^{uu}(p_i).$$

Observemos que pode acontecer que existam $m_l, m_j \in \mathbb{Z}^+$ tais que $|m_l t_l - m_j t_j| > ct_i$ onde $t_i = \min_{1 \le l, j \le k} (t_l, t_j)$.

Para solucionar isto, usemos a Observação 4. Ou seja existe $M_i \in \mathbb{Z}^+$ tal que $|M_i m_i t_i - M_l m_l t_l| < ct_i$

Logo, existe t suficientemente grande tal que $|t - n_i t_i| < ct_i$ onde $n_i = M_i m_i$ e (i = 1, ..., k).



Agora, como $\phi_{m_i t_i}(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \subset \phi_{n_i t_i}(B^{uu}_{\frac{\epsilon}{2}}(p_i))$ desde que $m_i < n_i$ e $B^{uu}_T(p_i) \subset \phi_{m_i t_i}(B^{uu}_{\frac{\epsilon}{2}}(p_i))$, temos que

$$B_T^{uu}(p_i) \subset \phi_{n_i t_i}(B_{\frac{\epsilon}{2}}^{uu}(p_i))$$

Assim, concluindo a prova do Resultado 2.5, (ver figura 2.3).

Agora, para concluir com a prova da Afirmação 2.5, basta tomar $t = \max_{1 \leq i \leq k} (n_i t_i)$.

Daqui,

$$\phi_{n_i t_i}(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \subset \phi_t(B^{uu}_{\frac{\epsilon}{2}}(p_i))$$

assim,

$$B_T^{uu}(p_i) \subset \phi_t(B_{\frac{\epsilon}{2}}^{uu}(p_i)).$$

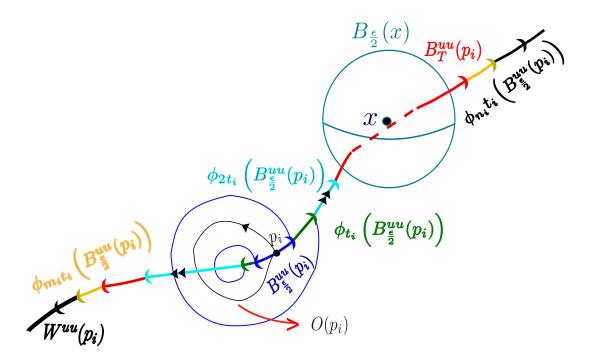


Figura 2.3: Resultado 2.5

Logo, como pelo Resultado 2.3 temos que $B_T^{uu}(p_i) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$ assim,

$$\phi_t(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset.$$

Isto conclui a prova da Afirmação 2.5.

Afirmação 2.6. Para algum j onde $1 \leq j \leq k$ temos que $\phi_{-t}(W) \cap B_{\delta}(\frac{\varepsilon}{2})(p_j) \neq \emptyset$

De fato, temos por (2.5) que,

$$M \subset \bigcup_{i=1}^k B_{\delta(\frac{\epsilon}{2})}(p_i)$$

logo, como $\phi_{-t}(W) \subset M$ tem-se que

$$\phi_{-t}(W) \subset \bigcup_{i=1}^k B_{\delta(\frac{\epsilon}{2})}(p_i).$$

Isto é, se $x \in \phi_{-t}(W)$ então $x \in \bigcup_{i=1}^k B_{\delta(\frac{\epsilon}{2})}(p_i)$.

Daqui, existe $j \in [1, k]$ tal que $x \in B_{\delta(\frac{\epsilon}{2})}(p_j)$, de onde $x \in \phi_{-t}(W) \cap B_{\delta(\frac{\epsilon}{2})}(p_j)$.

Assim, para algum $j \in [1, k]$ temos que

$$\phi_{-t}(W) \cap B_{\delta(\frac{\epsilon}{2})}(p_j) \neq \emptyset.$$

De onde se conclui a prova da Afirmação 2.6, (ver figura 2.4).

Afirmação 2.7. Existem $q \in W^{uu}(p_j) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x))$ e $y \in \phi_{-t}(W) \cap W^s(q)$ tal que $d(q, y) < \frac{\epsilon}{2}$.

De fato, pela Afirmação 2.5 temos que existe t>0 tal que para $i=1,\dots,k$ tem-se que

$$\phi_t(B^{uu}_{\frac{\epsilon}{2}}(p_i)) \cap B_{\frac{\epsilon}{2}}(x) \neq \emptyset$$

então,

$$B^{uu}_{\frac{\epsilon}{2}}(p_i) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x)) \neq \emptyset.$$

Logo, como $B^{uu}_{\frac{\epsilon}{2}}(p_i) \subset W^{uu}(p_i)$ para todo i=1,...,k temos que,

$$W^{uu}(p_i) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x)) \neq \emptyset$$

em particular, para $j \in [1, k]$ temos que $W^{uu}(p_j) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x)) \neq \emptyset$.

De onde temos que existe

$$q \in W^{uu}(p_j) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x)). \tag{2.6}$$

Agora, como pela Afirmação 2.6 temos que $\phi_{-t}(W) \cap B_{\delta(\frac{\epsilon}{2})}(p_j) \neq \emptyset$ para algum $j \in [1, k]$ e $q \in W^{uu}(p_j) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x)) \neq \emptyset$, pelo teorema de vizinhança produto local temos que existe $y \in \phi_{-t}(W) \cap W^s(q)$ tal que $d(q, y) < \frac{\epsilon}{2}$.

De onde se conclui a prova da Afirmação 2.7, (ver figura 2.4).

Afirmação 2.8. $\phi_t(y) \in B_{\epsilon}(x)$.

De fato, desde que y e q estejam na mesma variedade estável e $d(q,y)<\frac{\epsilon}{2}$, pela Afirmação 2.7 temos que, $d(\phi_t(q),\phi_t(y))< d(q,y)<\frac{\epsilon}{2}$.

Isto é,

$$d(\phi_t(q), \phi_t(y)) < \frac{\epsilon}{2}. \tag{2.7}$$

Por outro lado, como $q \in W^{uu}(p_j) \cap \phi_{-t}(B_{\frac{\epsilon}{2}}(x))$ por (2.6), segue que $q \in \phi_{-t}(B_{\frac{\epsilon}{2}}(x))$, de onde $\phi_t(q) \in B_{\frac{\epsilon}{2}}(x)$.

Assim,

$$d(x, \phi_t(q)) < \frac{\epsilon}{2}. \tag{2.8}$$

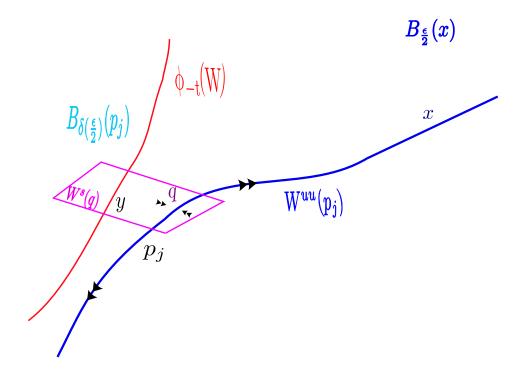


Figura 2.4: Afirmação 2.6 e 2.7

Logo usando (2.7), (2.8) e a desigualdade triangular temos que,

$$d(x, \phi_t(y)) \le d(x, \phi_t(q)) + d(\phi_t(q), \phi_t(y)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

de onde,

$$d(x, \phi_t(y)) < \epsilon$$
.

Finalmente daqui, segue que

$$\phi_t(y) \in B_{\epsilon}(x)$$
.

E por outro lado, como $\phi_t(y) \in W$ pela Afirmação (2.7).

Temos que

$$\phi_t(y) \in B_{\epsilon}(x) \cap W$$

de onde,

$$B_{\epsilon}(x) \cap W \neq \emptyset$$
.

Assim,

$$x \in \overline{W}$$
.

Isto é, dado $x \in M$ mostramos que $x \in \overline{W}$.

O que o mesmo dizer que $M\subset \overline{W}$ e como por outro lado temos que $\overline{W}\subset M,$

segue que

$$\overline{W} = M$$
.

Logo, como $W \in \mathcal{F}^{uu}$ é arbitrário, tomemos $W = W^{uu}(x)$, assim

$$\overline{W^{uu}(x)} = M.$$

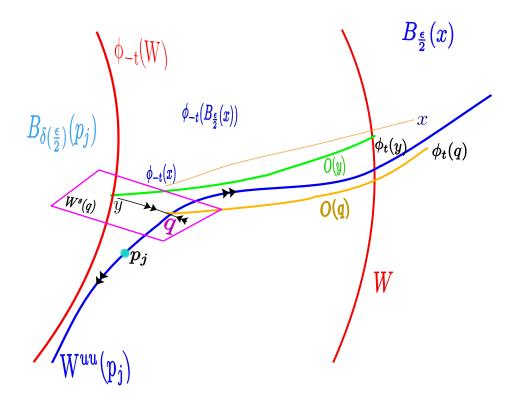


Figura 2.5: Afirmação 2.8

2.2 Folheações Conjuntamente Integráveis

Seja $N_{\delta}(x)$ uma vizinhança produto de x como no Teorema 1.3. Se y e z estão na mesma variedade instável forte em $N_{\delta}(x)$, então existe um $\delta'>0$ tal que a aplicação $F_{y,z}:B^s_{\delta'}(y)\longrightarrow B^s_{\delta}(z)$ dada pela projeção ao longo da variedade instável forte é bem definida.

Definição 2.1. As folheações \mathcal{F}^{uu} e \mathcal{F}^{ss} são chamadas conjuntamente integrável em $N_{\delta}(x)$, se para y e z que estão na mesma variedade instável forte e $\delta' > 0$ temos que:

$$F_{y,z}\left(W^{ss}(u)\cap B^s_{\delta'}(y)\right)\subset W^{ss}\left(F_{y,z}(u)\right)\cap B^s_{\delta}(z),\quad onde\ u\in B^s_{\delta'}(y).$$

 \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integrável se todos os pontos de M estão contida em tal vizinhança $N_{\delta}(x)$. Também diremos que E^{u} e E^{s} são conjuntamente integrável.

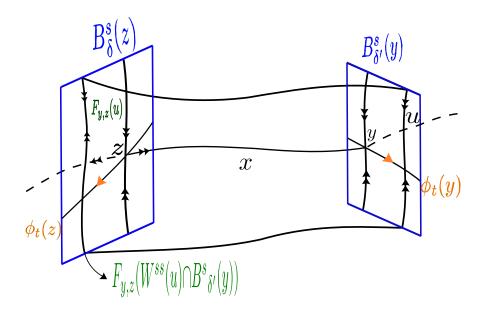


Figura 2.6: Folheações Conjuntamente Integráveis

Agora, passamos a enunciar um resultado que é a caracterização de folheações \mathcal{F}^{uu} e \mathcal{F}^{ss} conjuntamente integrável.

Proposição 2.2. \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integráveis se, e somente se, $E^u \oplus E^s$ é integrável.

Demonstração: Suponhamos que $E^u \oplus E^s$ é integrável então \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integráveis.

Pois, caso contrario $E^u \oplus E^s$ é tangente a duas sub variedades $F_{y,z}(W^{ss}(u))$ e $W^{ss}(F_{y,z}(u))$. O qual é uma contradição, já que $E^u \oplus E^s$ é tangente a uma única folheação (ver figura 2.7), de onde

$$F_{y,z}\left(W^{ss}(u)\cap B^s_{\delta'}(y)\right)\subset W^{ss}\left(F_{y,z}(u)\right)\cap B^s_{\delta}(z)\ e\ u\in B^s_{\delta'}(y).$$

Agora, suponhamos que \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integráveis então, mostraremos que $E^u \oplus E^s$ é integrável.

De fato:

Se \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integráveis então há uma subvariedade C^1 única através de cada ponto x de M, cujo espaço tangente é $E^u_x \oplus E^s_x$. Temos assim uma folheação \mathcal{F} de codimensão um com fibrado tangente $E^u \oplus E^s$.

Afirmação 2.9. A folheação \mathcal{F} é de classe C^1 .

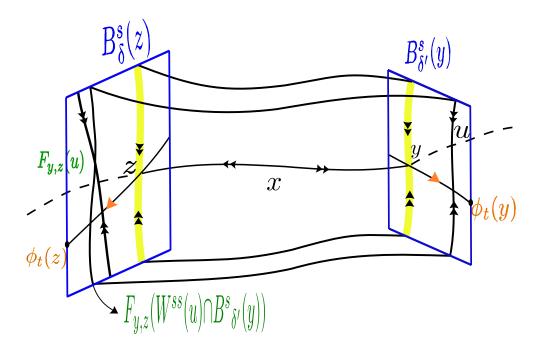


Figura 2.7:

De fato, para cada $p \in M$, sejam L(p) uma folha de $\mathcal F$ que contém $p, B \subset L(p)$ uma bola aberta contendo p, e

$$\eta: B \longrightarrow \mathbb{R}^{n-1}$$
 um mergulho C^1 .

Agora, como ϕ_t leva folhas de \mathcal{F} em folhas de \mathcal{F} desde que $\phi_t: M \longrightarrow M$ é um homeomorfismo para cada t fixo.

Definamos,

$$U = \bigcup_{|t| < \delta} \phi_t(B)$$

onde $\delta > 0$ é suficientemente pequeno tal que a aplicação

$$h: B \times (-\delta, \delta) \longrightarrow U$$

 $(x, t) \longmapsto h(x, t) = \phi_t(x)$

seja um homeomorfismo.

Agora, defina

$$\psi: U \longrightarrow R^n (= R^{n-1} \times R)$$

 $\phi_t(x) \longmapsto \psi(\phi_t(x)) = (\eta(x), t).$

Claramente ψ é C^1 e a coleção de todas as cartas definidas deste modo determinam a solução de folheação \mathcal{F} , isto é, \mathcal{F} é C^1 .

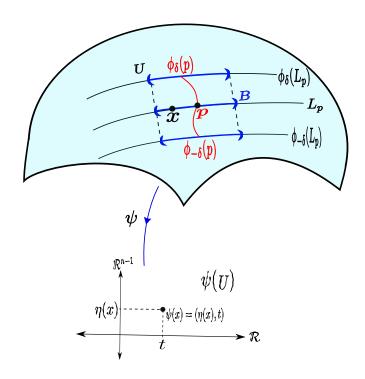


Figura 2.8: Afirmação 2.9

Observemos que da Proposição 2.2 se conclui que, se $E^u \oplus E^s$ não é integrável então \mathcal{F}^{uu} e \mathcal{F}^{ss} não são conjuntamente integráveis. A contra positiva da seguinte proposição afirma que, se \mathcal{F}^{uu} e \mathcal{F}^{ss} não são conjuntamente integráveis então $W^{uu}(x)$ e $W^{ss}(x)$ são densos em M para cada $x \in M$. Isto é, se $E^u \oplus E^s$ não é integrável então $W^{uu}(x)$ e $W^{ss}(x)$ são densos em M para cada $x \in M$.

Proposição 2.3. Se algum variedade estável forte ou instável forte não é denso em M então \mathcal{F}^{uu} e \mathcal{F}^{ss} são juntamente integrável.

Demonstração:

Queremos mostrar que dado um $x \in M$ arbitrário existe uma vizinhança produto $N_{\delta}(x)$ de x onde $\delta > 0$ tal que dado y, z e $\delta' > 0$ como na Definição 2.1 tem-se que:

$$F_{y,z}\left(W^{ss}(u)\cap B^s_{\delta'}(y)\right)\subset W^{ss}\left(F_{y,z}(u)\right)\cap B^s_{\delta}(z)$$

onde $u \in B^s_{\delta'}(y)$.

De fato:

O teorema de vizinhança produto garante a existência de $N_{\delta}(x)$. Agora mostremos que,

$$F_{y,z}\left(W^{ss}(u)\cap B^s_{\delta'}(y)\right)\subset W^{ss}\left(F_{y,z}(u)\right)\cap B^s_{\delta}(z).$$

Por hipótese, como alguma variedade estável forte ou instável forte não é denso em M então existe $x' \in M$ tal que $W^{uu}(x')$ ou $W^{ss}(x')$ não é densa em M. Suponhamos que $W^{uu}(x')$ não é densa em M, então pelo Lema 2.4 existe um ponto periódico p de ϕ_t de período r tal que $W^{uu}(p)$ não é densa em M, logo pela Proposição 2.1 temos que,

- i) M é um fibrado sobre S^1 com fibra $\overline{W^{uu}(p)}$, e
- ii) ϕ_t é a suspensão de um homeomorfismo $\phi_r|_{\overline{W^{uu}(p)}}$, onde r é o período de p.

Por outro lado temos que:

- $\overline{W^{uu}(p)}$ é \mathcal{F}^{uu} -saturado desde que $W^{uu}(p)$ é \mathcal{F}^{uu} -saturado.
- $\overline{W^{uu}(p)}$ é \mathcal{F}^{ss} -saturado.

Pois, caso contrario se $\overline{W^{uu}(p)}$ não é \mathcal{F}^{ss} -saturado, existe $u \in \overline{W^{uu}(p)}$ tal que $W^{ss}(u) \not\subset \overline{W^{uu}(p)}$. Então, existe $v \in W^{ss}(u)$ tal que $v \not\in \overline{W^{uu}(p)}$. Daqui, segue da Proposição 2.1 que $v \in \phi_t\left(\overline{W^{uu}(p)}\right)$ para algum $t \in (0, r)$. Agora, como $v \in W^{ss}(u)$ temos que,

$$\lim_{n \to \infty} d\left(\phi_{nr}(v), \phi_{nr}(u)\right) = 0. \tag{2.9}$$

Por outro lado, como $v \in \phi_t\left(\overline{W^{uu}(p)}\right)$ segue que, $\phi_{nr}(v) \in \phi_{nr}\left(\phi_t\left(\overline{W^{uu}(p)}\right)\right) = \phi_t\left(\phi_{nr}\left(\overline{W^{uu}(p)}\right)\right) = \phi_t\left(\overline{W^{uu}(p)}\right)$, pois $\phi_{nr}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$ desde que r é o período de p. Assim,

$$\phi_{nr}(v) \in \phi_t\left(\overline{W^{uu}(p)}\right).$$
(2.10)

E, como $u \in \overline{W^{uu}(p)}$ então $\phi_{nr}(u) \in \phi_{nr}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}$. Assim,

$$\phi_{nr}(u) \in \overline{W^{uu}(p)} \tag{2.11}$$

Logo, por (2.9), (2.10) e (2.11) segue que, $d\left(\phi_t\left(\overline{W^{uu}(p)}\right), \overline{W^{uu}(p)}\right) = 0$. Daqui, como $\phi_t\left(\overline{W^{uu}(p)}\right)$ e $\overline{W^{uu}(p)}$ são compactos desde que M é compacto temos que, $\phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)} \neq \emptyset$, o que é uma contradição ao Lema 2.1.

• $\phi_{t_0}\left(\overline{W^{uu}(p)}\right)$ é \mathcal{F}^{ss} -saturado onde $t_0 \in (0,r)$.

Pois, seja $y_1 = \phi_{t_0}(x_1) \in \phi_{t_0}\left(\overline{W^{uu}(p)}\right)$ tal que $x_1 \in \overline{W^{uu}(p)}$, logo como $\overline{W^{uu}(p)}$ é \mathcal{F}^{ss} -saturado temos que $W^{ss}(x_1) \subset \overline{W^{uu}(p)}$ então $\phi_{t_0}\left(W^{ss}(x)\right) \subset \phi_{t_0}\left(\overline{W^{uu}(p)}\right)$, logo como $\phi_{t_0}(W^{ss}(x_1)) = W^{ss}\left(\phi_{t_0}(x_1)\right) = W^{ss}(y_1)$ temos que, $W^{ss}(y_1) \subset \phi_{t_0}\left(\overline{W^{uu}(p)}\right)$.

• $\phi_{t_0}\left(\overline{W^{uu}(p)}\right)$ é \mathcal{F}^{uu} -saturado onde $t_0 \in (0,r)$, desde que $\overline{W^{uu}(p)}$ é \mathcal{F}^{uu} -saturado.

Note que, $\phi_{t_0}\left(\overline{W^{uu}(p)}\right)$ é um fibrado, desde que $\overline{W^{uu}(p)}$ é um fibrado e $\phi_r|_{\overline{W^{uu}(p)}}$ deixa cada fibrado invariante. Além disso pelo Lema 2.1 as fibras são disjuntas.

Denotemos $K_u = \phi_{t_0}\left(\overline{W^{uu}(p)}\right)$ a fibra que contem o ponto u para algum $0 < t_0 < r$.

Afirmação 2.10. Se $u \in W^{ss}(y)$ então $W^{ss}(y) \subset K_u$.

De fato, como $u \in K_u$ e K_u é \mathcal{F}^{ss} -saturado temos que $W^{ss}(u) \subset K_u$.

Daí como $u \in W^{ss}(y)$ temos que $W^{ss}(u) = W^{ss}(y)$.

Assim,

$$W^{ss}(y) \subset K_u$$
.

De maneira análoga se prova que, se $u \in W^{uu}(y)$ então $W^{uu}(y) \subset K_u$.

Afirmação 2.11. Se $u \in W^{ss}(y) \cap B^s_{\delta'}(y)$ então $F_{y,z}(W^{ss}(y) \cap B^s_{\delta'}(y))$ esta na mesma fibra que $W^{ss}(y) \cap B^s_{\delta'}(y)$.

De fato, Como $u \in W^{ss}(y) \cap B^s_{\delta'}(y)$ então pela Afirmação 2.10 $W^{ss}(y) \cap B^s_{\delta'}(y) \subset K_u$.

Agora, mostremos que $F_{u,z}(W^{ss}(y) \cap B^s_{\delta'}(y)) \subset K_u$.

Isto é, se $q' \in F_{y,z}(W^{ss}(y) \cap B^s_{\delta'}(y))$ então $q' \in K_u$.

Como $q' \in F_{y,z}(W^{ss}(y) \cap B^s_{\delta'}(y))$ então existe $u' \in W^{ss}(y) \cap B^s_{\delta'}(y)$ tal que $q' = F_{y,z}(u')$.

Por outro lado, como $u' \in K_{u'}$ e $K_{u'}$ é \mathcal{F}^{uu} -saturado temos que, $W^{uu}(u') \subset K_{u'}$. Logo, como u' e $q' = F_{y,z}(u')$ então na mesma variedade instável temos que $q' \in W^{uu}(u')$. De onde segue que,

$$q' \in K_{u'}. \tag{2.12}$$

Além disso, como $u' \in W^{ss}(y) \cap B^s_{\delta'}(y) \subset K_u$ segue que, $u' \in K_u$.

Daqui, $u' \in K_u \cap K_{u'}$ isto é, $K_u \cap K_{u'} \neq \emptyset$ então, pelo Lema 2.2 temos que,

$$K_u = K_{u'}$$
.

Agora, por (2.12) segue que,

$$q' \in K_u$$
.

Assim, $F_{y,z}(W^{ss}(y) \cap B^s_{\delta'}(y))$ esta na mesma fibra que $W^{ss}(y) \cap B^s_{\delta'}(y)$.

Afirmação 2.12. $F_{y,z}(W^{ss}(y) \cap B^s_{\delta'}(y)) \subset W^{ss}(F_{y,z}(y)) \cap B^s_{\delta}(z)$.

Por contradição, suponhamos que $F_{y,z}\left(W^{ss}(y)\cap B^s_{\delta'}(y)\right)\not\subseteq W^{ss}(F_{y,z}(y))\cap B^s_{\delta}(z)$ então, existe $q=F_{y,z}(u)\in F_{y,z}\left(W^{ss}(y)\cap B^s_{\delta'}(y)\right)$ com $u\in W^{ss}(y)\cap B^s_{\delta'}(y)$ tal que $q\not\in W^{ss}(F_{y,z}(y))\cap B^s_{\delta}(z)$.

Logo, como $F_{y,z}: B^s_{\delta'}(y) \longrightarrow B^s_{\delta}(z)$ e $u \in B^s_{\delta'}(y)$ temos que, $q = F_{y,z}(u) \in B^s_{\delta}(z) \subset W^s_{\delta}(z) = \bigcup_{t \in (-\delta,\delta)} W^{ss}(\phi_t(z)).$

Daqui, segue que

$$q \in W^{ss}(\phi_{t_0}(z))$$

para algum $-\delta < t_0 < \delta < r$. Note que $t_0 \neq 0$, caso contrario se $t_0 = 0$ então, $q \in W^{ss}(z)$ o que seria uma contradição, pois $q \notin W^{ss}(F_{y,z}(y)) = W^{ss}(z)$.

Agora, seja $K_z = \phi_{t_1}\left(\overline{W^{uu}(p)}\right)$ para algum $t_1 \in (0, r)$. Então,

$$\phi_{-t_1}(K_z) = \overline{W^{uu}(p)}. \tag{2.13}$$

Por outro lado, observemos que

$$\phi_{t_0+t_1}\left(\overline{W^{uu}(p)}\right) = \phi_{t_0}\left(\phi_{t_1}\left(\overline{W^{uu}(p)}\right)\right) = \phi_{t_0}(K_z) = K_{\phi_{t_0}(z)}$$

então,

$$\phi_{t_0+t_1}\left(\overline{W^{uu}(p)}\right) = K_{\phi_{t_0}(z)}.$$
(2.14)

Além disso, observemos que

- i) $K_{\phi_{t_0}(z)}=K_q$. Pois, como $q\in W^{ss}(\phi_{t_0}(z))$ então, pela Afirmação 2.10 temos que, $W^{ss}(\phi_{t_0}(z))\subset K_q$, daqui, $\phi_{t_0}(z)\in K_q$ assim, pela Afirmação 2.11, $K_{\phi_{t_0}(z)}=K_q$.
- ii) $K_q = K_u$.

Pois, como u e $q=F_{y,z}(u)$ então na mesma variedade instável temos que $q\in W^{uu}(u)$ então, pela Afirmação 2.10 temos que, $W^{uu}(u)\subset K_q$, daqui, $u\in K_q$ assim, pela Afirmação 2.11, $K_u=K_q$.

iii) $K_u = K_y$.

Pois, como $u \in W^{ss}(y) \cap B^s_{\delta'}(y)$ então $u \in W^{ss}(y)$ logo, pela Afirmação 2.10 temos que, $W^{ss}(y) \subset K_u$, daqui, $y \in K_u$ assim, pela Afirmação 2.11, $K_y = K_u$.

iv) $K_y = K_z$.

Pois, como y e z então na mesma variedade instável temos que $z \in W^{uu}(y)$ então, pela Afirmação 2.10 temos que, $W^{uu}(y) \subset K_z$, daqui, $y \in K_z$ assim, pela Afirmação 2.11, $K_y = K_z$.

Assim,

$$K_{\phi_{t_0}(z)} = K_q = K_u = K_y = K_z$$

de onde,

$$K_{\phi_{t_0}(z)} = K_z.$$

Logo,

$$\phi_{-(t_0+t_1)}(K_{\phi_{t_0}(z)}) = \phi_{-(t_0+t_1)}(K_z)$$

$$= \phi_{-t_0}(\phi_{-t_1}(K_z))$$

$$\stackrel{(2.13)}{=} \phi_{-t_0}\left(\overline{W^{uu}(p)}\right).$$

Daí, por outro lado como

$$\phi_{-(t_0+t_1)}(K_{\phi_{t_0}(z)}) \stackrel{(2.14)}{=} \phi_{-(t_0+t_1)} \left(\phi_{t_0+t_1} \left(\overline{W^{uu}(p)} \right) \right)$$
$$= \overline{W^{uu}(p)}.$$

Temos que,

$$\overline{W^{uu}(p)} = \phi_{-t_0}\left(\overline{W^{uu}(p)}\right) \Rightarrow \phi_{t_0}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)}.$$

Logo,

$$\overline{W^{uu}(p)} \cap \phi_{t_0}\left(\overline{W^{uu}(p)}\right) = \overline{W^{uu}(p)} \neq \emptyset.$$

O que é um contradição ao Lema 2.1

Assim,
$$F_{y,z}(W^{ss}(y) \cap B^s_{\delta'}(y)) \subset W^{ss}(F_{y,z}(y)) \cap B^s_{\delta}(z)$$
.

Isto conclui a prova da Afirmação 2.12.

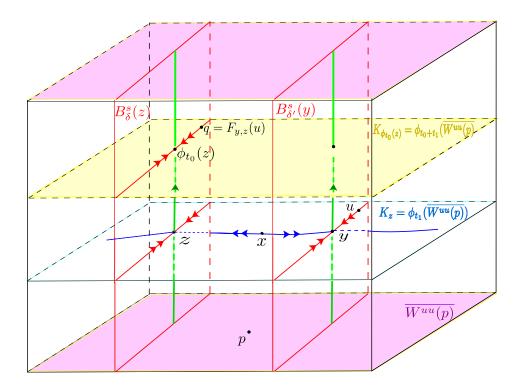


Figura 2.9: Afirmação 2.12

Daqui, de maneira similar para $u \in B_{\delta'}^s(y)$ temos que,

$$F_{y,z}\left(W^{ss}(u)\cap B^s_{\delta'}(y)\right)\subset W^{ss}\left(F_{y,z}(u)\right)\cap B^s_{\delta}(z).$$

Isto, prova a Proposição.

2.3 Prova do Teorema Principal

Nesta seção, nosso objetivo é provar o Teorema Principal, cujo enunciado é dado a seguir.

Teorema 2.1. Sejam M uma variedade Riemanniana compacta, conexa, suave $e \phi: M \times \mathbb{R} \longrightarrow M$ um fluxo Anosov de classe C^r $(r \ge 1)$ tal que $\Omega(\phi_t) = M$. Então existem exatamente duas possibilidades:

- i) Cada variedade estável forte e instável forte é denso em M, ou
- ii) ϕ_t é a suspensão de um difeomorfismo de Anosov de uma subvariedade compacta C^1 de codimensão 1 em M.

Demonstração:

Suponhamos que não acontece o item (i), então mostraremos que acontece o item (ii), isto é, que ϕ_t a suspensão de um difeomorfismo de Anosov de uma subvariedade compacta C^1 de codimensão um em M.

De fato:

Como não acontece o item (i), existe um ponto $x \in M$ tal que $W^{uu}(x)$ ou $W^{ss}(x)$ não é densa em M. Suponhamos que $W^{uu}(x)$ não é densa em M, então pelo Lema 2.4, existe um ponto periódico p de ϕ_t tal que $W^{uu}(p)$ não é densa em M. Daí segue, pela Proposição 2.1 que ϕ_t é a suspensão de um homeomorfismo $\phi_r|_{\overline{W^{uu}(p)}}$, onde r é o período de p.

Para concluir, basta mostrar que $\overline{W^{uu}(p)}$ seja uma subvariedade de M. Pois daí teríamos que ϕ_t é a suspensão de um difeomorfismo de Anosov de uma subvariedade. Além disso compacta, desde que M é compacta e $\overline{W^{uu}(p)} \subset M$ fechada. E de codimensão 1 em M desde que ϕ_t é a suspensão de $\phi_r|_{\overline{W^{uu}(p)}}$.

Com esse propósito observemos que, como $W^{uu}(x)$ ou $W^{ss}(x)$ não é densa em M, temos pela Proposição 2.3 que \mathcal{F}^{uu} e \mathcal{F}^{ss} são conjuntamente integrável, daí segue da Proposição 2.2 que $E^u \oplus E^s$ é integrável. Daqui existe uma folheação \mathcal{F} de classe C^1 tal que o subespaço $E^u \oplus E^s$ é tangente a \mathcal{F} .

Afirmação 2.13. Se $x \in \overline{W^{uu}(p)}$ e $L_x = L$ é uma folha de \mathcal{F} contendo x então $L \subset \overline{W^{uu}(p)}$.

De fato, como L é uma folha de \mathcal{F} então L é tangente a $E^u \oplus E^s$ e tem a forma de $\bigcup_{y \in W^{uu}(x)} W^{ss}(y)$ desde que L é \mathcal{F}^{uu} -saturado e \mathcal{F}^{uu} -saturado.

Logo, dado $z \in L = \bigcup_{y \in W^{uu}(x)} W^{ss}(y)$ temos que, $z \in W^{ss}(y)$ para algum $y \in W^{uu}(x)$.

Logo, como $x \in \overline{W^{uu}(p)}$ e $\overline{W^{uu}(p)}$ é \mathcal{F}^{uu} -saturado, desde que $W^{uu}(p)$ é \mathcal{F}^{uu} -saturado, temos que $W^{uu}(x) \subset \overline{W^{uu}(p)}$. Daqui segue que,

$$y \in \overline{W^{uu}(p)}$$
.

Além disso, como $\overline{W^{uu}(p)}$ é \mathcal{F}^{ss} -saturado (ver Proposição 2.3) temos que $W^{ss}(y) \subset \overline{W^{uu}(p)}$. De onde,

$$z \in \overline{W^{uu}(p)}$$
.

Assim,

$$L \subset \overline{W^{uu}(p)}$$
.

Isto conclui a prova da Afirmação 2.13.

Agora, se mostramos que $L = \overline{W^{uu}(p)}$ concluiriamos a prova do Teorema, pois teríamos que $\overline{W^{uu}(p)}$ é uma subvariedade de classe C^1 , já que $L \in \mathcal{F}$ é uma subvariedade de classe C^1 de M.

Para isto, basta mostrar que L é denso em $\overline{W^{uu}(p)}$ (isto é, $\overline{L} = \overline{W^{uu}(p)}$) e que L é fechado (isto é, $L = \overline{L}$), pois claramente daqui teríamos que $L = \overline{W^{uu}(p)}$.

Afirmação 2.14. $\overline{L}=\overline{W^{uu}(p)}$

- i) Claramente, $\overline{L} \subset \overline{W^{uu}(p)}$.

 Pois, pela Afirmação 2.13 temos que, $L \subset \overline{W^{uu}(p)}$ então $\overline{L} \subset \overline{\overline{W^{uu}(p)}} = \overline{W^{uu}(p)}$. Isto é, $\overline{L} \subset \overline{W^{uu}(p)}$.
- ii) Agora, provemos que $\overline{W^{uu}(p)} \subset \overline{L}$.

Para isto, basta mostrar que $W^{uu}(p) \subset L$.

Suponhamos por absurdo que, $W^{uu}(p) \not\subset L$.

Então, existe $q_1 \in W^{uu}(p)$ tal que $q_1 \notin L$. Mais ainda, observemos que, para todo $q \in W^{uu}(p)$ temos que, $q \notin L$. Pois, como $q \in W^{uu}(p)$ então $W^{uu}(q) = W^{uu}(p)$ logo, $W^{uu}(q) \notin L$. Daqui, como L é \mathcal{F}^{uu} -saturado temos que, $q \notin L$.

Assim,

$$W^{uu}(p) \cap L = \emptyset \tag{2.15}$$

Mas, $x \in \overline{W^{uu}(p)}$ então, para toda V_x (vizinhança de x), temos que $V_x \cap W^{uu}(p) \neq \emptyset$, em particular para $V_x = \bigcup_{-\epsilon < t < \epsilon} \phi_t(L)$, que claramente contem x desde que $L = L_x$, onde $\epsilon < r$. Então,

$$\bigcup_{-\epsilon < t < \epsilon} \phi_t(L) \cap W^{uu}(p) \neq \emptyset.$$

Logo, existe $t \in (-\epsilon, \epsilon)$ tal que $\phi_t(L) \cap W^{uu}(p) \neq \emptyset$. Agora note que por (2.15) $t \neq 0$.

Assim, existe $|t| < \epsilon$ e $t \neq 0$ tal que,

$$W^{uu}(p) \cap \phi_t(L) \neq \emptyset. \tag{2.16}$$

Logo, como pela Afirmação 2.13 $L \subset \overline{W^{uu}(p)}$ e $W^{uu}(p) \subset \overline{W^{uu}(p)}$ temos que, $W^{uu}(p) \cap \phi_t(L) \subset \overline{W^{uu}(p)} \cap \phi_t(\overline{W^{uu}(p)})$. Daqui, por (2.16) segue que, $\overline{W^{uu}(p)} \cap \phi_t(\overline{W^{uu}(p)}) \neq \emptyset$.

Isto é, existe $|t| < \epsilon$ e $t \neq 0$ tal que $\overline{W^{uu}(p)} \cap \phi_t(\overline{W^{uu}(p)}) \neq \emptyset$. O que é uma contradição ao Lema 2.1.

Daqui concluímos que $W^{uu}(p) \subset L$.

Assim, $\overline{W^{uu}(p)} \subset \overline{L}$.

Provemos a seguinte afirmação.

Afirmação 2.15. L é fechado.

Suponhamos por contradição que L não é fechado, então existe uma sequência $\{x_n\}_{n\in\mathbb{N}},\,x_n\in L$ tal que $\lim_{n\to\infty}x_n=z$ e $z\not\in L$.

Observemos que, como $x_n \in L$ e $L \subset \overline{W^{uu}(p)}$ então $x_n \in \overline{W^{uu}(p)}$. Logo, como $\overline{W^{uu}(p)}$ é fechado então $z \in \overline{W^{uu}(p)}$. Daqui segue da Afirmação 2.13 que $L_z \subset \overline{W^{uu}(p)}$ (L_z é a folha de \mathcal{F} que contem z).

Seja V_z uma vizinhança de z e considere $\bigcup_{-\epsilon < t < \epsilon} \phi_t(L_z)$ com $0 < \epsilon < \frac{r}{2}$.

Agora, como existe $\{x_n\}_{n\in\mathbb{N}}$, $x_n\in L$ tal que $\lim_{n\to\infty}x_n=z$, então existe $n_0\in\mathbb{N}$ tal que para $n>n_0$ tem-se que $x_n\in V_z$. Além disso se $x_n\not\in L_z$ então existe $x_N\in L$ para algum $N>n_0$ tal que,

$$x_N \in V_z \cap \bigcup_{0 < |t| < \epsilon} \phi_t(L_z).$$

(Note que, se $x_n \in L_z$ não temos nada que provar).

Daqui, como $L_z \subset \overline{W^{uu}(p)}$ temos que, $x_N \in V_z \cap \bigcup_{0 < |t| < \epsilon} \phi_t \left(\overline{W^{uu}(p)} \right)$ então, $x_N \in \bigcup_{0 < |t| < \epsilon} \phi_t (\overline{W^{uu}(p)})$. De onde, para algum $0 < |t| < \epsilon$

$$x_N \in \phi_t(\overline{W^{uu}(p)}). \tag{2.17}$$

Além disso, desde que $x_N \in L$ e $L \subset \overline{W^{uu}(p)}$ temos que,

$$x_N \in \overline{W^{uu}(p)}. \tag{2.18}$$

Assim, de (2.17) e (2.18) temos que, $x_N \in \phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)}$.

Isto é, $\phi_t\left(\overline{W^{uu}(p)}\right) \cap \overline{W^{uu}(p)} \neq \emptyset$ para $0 < |t| < \epsilon < r$, o que é uma contradição ao Lema 2.1.

De onde,
$$L$$
 é fechado.

Observação 5. Em 1992 C. Bonatti e R. Langevin, construiram um fluxo de Anosov transitivo numa variedade compacta de dimensão 3 que não é uma suspensão de um difeomorfismo de Anosov, para maiores detalhes ver [3].

Por outro lado E. Ghys provou em [8] que o fluxo geodésico no fibrado tangente unitário de uma variedade Riemanniana compacta de curvatura negativa é um fluxo de Anosov transitivo além disso não é uma suspensão.

Referências Bibliográficas

- [1] Anosov, D. V. Geodesic flows on closed Riemannian manifolds with negative curvature. Proceedings of the Steklov Institute of Mathmetics, v. 90, (1967) (A. M. S. translation, 1969).
- [2] Barbot, T. Geometrie transverse des flots d'Anosov. These. Lyon decembre 1992.
- [3] Bonatti, C.; Langevin, R.; Un exemple de flot d'Anosov transitif transverse a un tore et not conjugue a une suspension. Ergodic Theory e Dynamical Systems, 1994.
- [4] Brin, M.; Stock, G. Introduction to Dynamical Systems. Cambridge University Press, 2002.
- [5] Camacho, C.; Lins, N. Geometric Theory of Foliations. Birkhauser, Boston, 1st ed, 1985.
- [6] Docarmo, M. Geometria Riemanniana. Rio de Janeiro: Projeto Euclides, IMPA, 1979.
- [7] Franks, J.; Williams, B. Anomalous Anosov flows. Global Theory of Dinamycal Systems. Springer Lecture Notes en Mathematics 819. Springer: Berlin. 1980, pp.158-174.
- [8] Ghys, E.; The dynamics of vertor fields in dimension 3. Notes by Matthias and Siddhartha Bhattacharya. 2013.
- [9] Haefliger, A. Varietees feuilletees. Ann. Scuola Norm. Sup. Pisa, v. 3, (1962), pp. 367-397.
- [10] Hirsch, M.; Pugh, W.; Shub, M. invariants manifolds. Lectures notes in Mathematics, v. 583. Berlin-New York: Springer-Verlag, 1977.
- [11] Katok, A.; Hasselblatt, B. A moderna Teoria de Sistemas Dinamicos. Cambridge University Press, 1999.
- [12] Lima, E. L. Variedades DiferenciÃįveis. Rio de Janeiro: Projeto Euclides, IMPA, 1978.
- [13] Matsumoto, S.; Codimension one Anosov Flow. Notes of the Series of Lectures held at the Seoul National University, 1995.

- [14] Morales, C. A. Lectures on sectional-Anosov flows. Rio de Janeiro. Monatsh. Math, 159(03), 2010.
- [15] Niven, I. Irrational numbers, Carus Math. Monograph no; 11, 1956.
- [16] Palis, J.; Melo, W. *Introducao aos Sistemas Dinamicos*. Rio de Janeiro: Projeto Euclides, IMPA, 1978.
- [17] Plante, J. F.; Anosov flows. American Journal of Mathematics, V. 94, No. 3 (Jul., 1972), pp. 729-754.
- [18] Plante, J. F.; Solvable groups acting on the line. Trasactions of the American Mathematical Society, 278, 401-414, 1983.
- [19] Perko, L. Differential Equations and Dynamical Systems, 3rd ed. Springer-Verlag, New York, 2011.
- [20] Pilyugin, S. Shadowing in Dynamical Systems. Springer-Verlag, Berlin-New York, 1999.
- [21] Smale, S. Differentiable dynamical systems. Bulletin of the American Mathematical Society, v. 73 (1967), pp. 747-817.
- [22] Verjovsky, A. Sistemas de Anosov. Universidad Nacional de Ingenieria, XII-ELAM, 1999.
- [23] Zehnder, E. Lectures on Dynamical Systems. European Mathematical Society, 2010.
- [24] Zhuzhoma, V.; Aranson, S.; Berlitsky R. Qualitative Theory of Dynamical Systems on Surfaces. Springer Press, 1999.